Shallow nitrogen-vacancy (NV) centers are promising candidates for high-precision sensing applications; these defects, when positioned a few nanometers below the surface, provide an atomic-scale resolution along with substantial sensitivity. However, the dangling bonds and impurities on the diamond surface result in a complex environment which reduces the sensitivity and is unique to each shallow NV center. To avoid the environment's detrimental effect, we apply feedback-based quantum optimal control. We first show how a direct search can improve the initialization and readout process. In a second step, we optimize microwave pulses for pulsed optically detected magnetic resonance (ODMR) and Ramsey measurements. Throughout the sensitivity optimizations, we focus on robustness against errors in the control field amplitude. This feature not only protects the protocols' sensitivity from drifts but also enlarges the sensing volume. The resulting ODMR measurements produce sensitivities below 1μT Hz-12 for an 83% decrease in control power, increasing the robustness by approximately one third. The optimized Ramsey measurements produce sensitivities below 100 nT Hz-12 giving a twofold sensitivity improvement. Being on par with typical sensitivities obtained via single NV magnetometry, the complementing robustness of the presented optimization strategy may provide an advantage for other NV-based applications.

Oshnik N., Rembold P., Calarco T., Montangero S., Neu E., Muller M.M. (2022). Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. PHYSICAL REVIEW A, 106(1), 1-15 [10.1103/PhysRevA.106.013107].

Robust magnetometry with single nitrogen-vacancy centers via two-step optimization

Calarco T.;
2022

Abstract

Shallow nitrogen-vacancy (NV) centers are promising candidates for high-precision sensing applications; these defects, when positioned a few nanometers below the surface, provide an atomic-scale resolution along with substantial sensitivity. However, the dangling bonds and impurities on the diamond surface result in a complex environment which reduces the sensitivity and is unique to each shallow NV center. To avoid the environment's detrimental effect, we apply feedback-based quantum optimal control. We first show how a direct search can improve the initialization and readout process. In a second step, we optimize microwave pulses for pulsed optically detected magnetic resonance (ODMR) and Ramsey measurements. Throughout the sensitivity optimizations, we focus on robustness against errors in the control field amplitude. This feature not only protects the protocols' sensitivity from drifts but also enlarges the sensing volume. The resulting ODMR measurements produce sensitivities below 1μT Hz-12 for an 83% decrease in control power, increasing the robustness by approximately one third. The optimized Ramsey measurements produce sensitivities below 100 nT Hz-12 giving a twofold sensitivity improvement. Being on par with typical sensitivities obtained via single NV magnetometry, the complementing robustness of the presented optimization strategy may provide an advantage for other NV-based applications.
2022
Oshnik N., Rembold P., Calarco T., Montangero S., Neu E., Muller M.M. (2022). Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. PHYSICAL REVIEW A, 106(1), 1-15 [10.1103/PhysRevA.106.013107].
Oshnik N.; Rembold P.; Calarco T.; Montangero S.; Neu E.; Muller M.M.
File in questo prodotto:
File Dimensione Formato  
PhysRevA.106.013107.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/964857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact