Wearable solutions, especially within the realm of health, are in high demand. Meeting this demand is possible thanks to energy-efficient sensors that acquire signals and transmit them as digital messages. Since transmission often heavily contributes to the overall energy consumption, compression can be beneficial. Inspired by Compressed Sensing, we propose an iterative compression scheme able to reduce the energy needed to transmit a signal. To meet a constraint in the quality of service, our novel scheme adapts the number of transmitted digital words for each signal instance. Adaptation is based on the output of a performance predictor embedded in the receiving decoder, that at every iteration estimates the quality of service. We test our novel compression paradigm over ECG signals and BLE communication protocol. Our method significantly reduces computation and transmission energy consumption compared to other already established techniques based on Compressed Sensing.
Marchioni, A., Martinini, F., Manovi, L., Cortesi, S., Rovatti, R., Setti, G., et al. (2023). Adapted Compressed Sensing with Incremental Encoder and Deep Performance Predictor for Low-Power Sensor Node Design. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/i2mtc53148.2023.10175954].
Adapted Compressed Sensing with Incremental Encoder and Deep Performance Predictor for Low-Power Sensor Node Design
Marchioni, A.;Martinini, F.;Manovi, L.;Rovatti, R.;Mangia, M.
2023
Abstract
Wearable solutions, especially within the realm of health, are in high demand. Meeting this demand is possible thanks to energy-efficient sensors that acquire signals and transmit them as digital messages. Since transmission often heavily contributes to the overall energy consumption, compression can be beneficial. Inspired by Compressed Sensing, we propose an iterative compression scheme able to reduce the energy needed to transmit a signal. To meet a constraint in the quality of service, our novel scheme adapts the number of transmitted digital words for each signal instance. Adaptation is based on the output of a performance predictor embedded in the receiving decoder, that at every iteration estimates the quality of service. We test our novel compression paradigm over ECG signals and BLE communication protocol. Our method significantly reduces computation and transmission energy consumption compared to other already established techniques based on Compressed Sensing.File | Dimensione | Formato | |
---|---|---|---|
adapted compressed sensing with incremental decoder post print.pdf
embargo fino al 13/07/2025
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
881.54 kB
Formato
Adobe PDF
|
881.54 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.