Sazdanovic and Yip (2018) defined a categorification of Stanley’s chromatic symmetric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjectured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky’s theorem.

Ciliberti A., Moci L. (2023). On chromatic symmetric homology and planarity of graphs. ELECTRONIC JOURNAL OF COMBINATORICS, 30(1), 1-11 [10.37236/11397].

On chromatic symmetric homology and planarity of graphs

Moci L.
2023

Abstract

Sazdanovic and Yip (2018) defined a categorification of Stanley’s chromatic symmetric function called the chromatic symmetric homology, given by a suitable family of representations of the symmetric group. In this paper we prove that, as conjectured by Chandler, Sazdanovic, Stella and Yip (2019), if a graph G is non-planar, then its chromatic symmetric homology in bidegree (1,0) contains Z2-torsion. Our proof follows a recursive argument based on Kuratowsky’s theorem.
2023
Ciliberti A., Moci L. (2023). On chromatic symmetric homology and planarity of graphs. ELECTRONIC JOURNAL OF COMBINATORICS, 30(1), 1-11 [10.37236/11397].
Ciliberti A.; Moci L.
File in questo prodotto:
File Dimensione Formato  
11397-PDF file-43576-2-10-20230120 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione 327.47 kB
Formato Adobe PDF
327.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/964523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact