Numerical modelling of vapour compression systems is very useful for performance optimization through the implementation of suitable model-based control applications; in this context the heat exchangers are the most challenging component to devise, due to phase transition and ensuing discontinuities of the physical properties, and one tool which has proven itself suitable for the task is the finite volume method. A numerical verification of a finite volume model of a brazed plate condenser in counterflow arrangement is carried out, employing a fixed timestep solver; some useful guidelines are suggested to properly choose the solver order, the integration step size and the number of grid elements, balancing the accuracy of the predictions with computational time and model stability and flexibility during the transients, with the ultimate goal to provide a model suited for real-time simulations and control-oriented applications.
Giovannini, M., Lorenzini, M. (2023). Numerical verification of the condenser finite volume model. JOURNAL OF PHYSICS. CONFERENCE SERIES, 2648(1), 2-10 [10.1088/1742-6596/2648/1/012027].
Numerical verification of the condenser finite volume model
Giovannini, Michael;Lorenzini, Marco
2023
Abstract
Numerical modelling of vapour compression systems is very useful for performance optimization through the implementation of suitable model-based control applications; in this context the heat exchangers are the most challenging component to devise, due to phase transition and ensuing discontinuities of the physical properties, and one tool which has proven itself suitable for the task is the finite volume method. A numerical verification of a finite volume model of a brazed plate condenser in counterflow arrangement is carried out, employing a fixed timestep solver; some useful guidelines are suggested to properly choose the solver order, the integration step size and the number of grid elements, balancing the accuracy of the predictions with computational time and model stability and flexibility during the transients, with the ultimate goal to provide a model suited for real-time simulations and control-oriented applications.File | Dimensione | Formato | |
---|---|---|---|
Giovannini_2023_J._Phys. _Conf._Ser._2648_012027.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.