Global SMEFT analyses have become a key interpretation framework for LHC physics, quantifying how well a large set of kinematic measurements agrees with the Standard Model. This agreement is encoded in measured Wilson coefficients and their uncertainties. A technical challenge of global analyses are correlations. We compare, for the first time, results from a profile likelihood and a Bayesian marginalization for a given data set with a comprehensive uncertainty treatment. Using the validated Bayesian framework we analyse a series of new kinematic measurements. For the updated dataset we find and explain differences between the marginalization and profile likelihood treatments.
Brivio, I., Bruggisser, S., Elmer, N., Geoffray, E., Luchmann, M., Plehn, T. (2024). To Profile or To Marginalize -- A SMEFT Case Study. SCIPOST PHYSICS, 16(1), 1-39 [10.21468/SciPostPhys.16.1.035].
To Profile or To Marginalize -- A SMEFT Case Study
Brivio, Ilaria;
2024
Abstract
Global SMEFT analyses have become a key interpretation framework for LHC physics, quantifying how well a large set of kinematic measurements agrees with the Standard Model. This agreement is encoded in measured Wilson coefficients and their uncertainties. A technical challenge of global analyses are correlations. We compare, for the first time, results from a profile likelihood and a Bayesian marginalization for a given data set with a comprehensive uncertainty treatment. Using the validated Bayesian framework we analyse a series of new kinematic measurements. For the updated dataset we find and explain differences between the marginalization and profile likelihood treatments.File | Dimensione | Formato | |
---|---|---|---|
SciPostPhys_16_1_035.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
4.3 MB
Formato
Adobe PDF
|
4.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.