Global SMEFT analyses have become a key interpretation framework for LHC physics, quantifying how well a large set of kinematic measurements agrees with the Standard Model. This agreement is encoded in measured Wilson coefficients and their uncertainties. A technical challenge of global analyses are correlations. We compare, for the first time, results from a profile likelihood and a Bayesian marginalization for a given data set with a comprehensive uncertainty treatment. Using the validated Bayesian framework we analyse a series of new kinematic measurements. For the updated dataset we find and explain differences between the marginalization and profile likelihood treatments.

Brivio, I., Bruggisser, S., Elmer, N., Geoffray, E., Luchmann, M., Plehn, T. (2024). To Profile or To Marginalize -- A SMEFT Case Study. SCIPOST PHYSICS, 16(1), 1-39 [10.21468/SciPostPhys.16.1.035].

To Profile or To Marginalize -- A SMEFT Case Study

Brivio, Ilaria;
2024

Abstract

Global SMEFT analyses have become a key interpretation framework for LHC physics, quantifying how well a large set of kinematic measurements agrees with the Standard Model. This agreement is encoded in measured Wilson coefficients and their uncertainties. A technical challenge of global analyses are correlations. We compare, for the first time, results from a profile likelihood and a Bayesian marginalization for a given data set with a comprehensive uncertainty treatment. Using the validated Bayesian framework we analyse a series of new kinematic measurements. For the updated dataset we find and explain differences between the marginalization and profile likelihood treatments.
2024
Brivio, I., Bruggisser, S., Elmer, N., Geoffray, E., Luchmann, M., Plehn, T. (2024). To Profile or To Marginalize -- A SMEFT Case Study. SCIPOST PHYSICS, 16(1), 1-39 [10.21468/SciPostPhys.16.1.035].
Brivio, Ilaria; Bruggisser, Sebastian; Elmer, Nina; Geoffray, Emma; Luchmann, Michel; Plehn, Tilman
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_16_1_035.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact