Consider a bounded, strongly pseudoconvex domain D subset of C-n with minimal smoothness (namely, the class C-2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in L-p(D), p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.(c) 2023 Elsevier Inc. All rights reserved.
Hu, B., Huo, Z., Lanzani, L., Palencia, K., Wagner, N.A. (2024). The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1), 1-45 [10.1016/j.jfa.2023.110177].
The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness
Lanzani, LoredanaMembro del Collaboration Group
;
2024
Abstract
Consider a bounded, strongly pseudoconvex domain D subset of C-n with minimal smoothness (namely, the class C-2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in L-p(D), p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.(c) 2023 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Commutators_of_the_Bergman_Projection_ACCEPTED.pdf
Open Access dal 02/10/2024
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
636.63 kB
Formato
Adobe PDF
|
636.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.