Consider a bounded, strongly pseudoconvex domain D subset of C-n with minimal smoothness (namely, the class C-2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in L-p(D), p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.(c) 2023 Elsevier Inc. All rights reserved.

Hu, B., Huo, Z., Lanzani, L., Palencia, K., Wagner, N.A. (2024). The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1), 1-45 [10.1016/j.jfa.2023.110177].

The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness

Lanzani, Loredana
Membro del Collaboration Group
;
2024

Abstract

Consider a bounded, strongly pseudoconvex domain D subset of C-n with minimal smoothness (namely, the class C-2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in L-p(D), p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.(c) 2023 Elsevier Inc. All rights reserved.
2024
Hu, B., Huo, Z., Lanzani, L., Palencia, K., Wagner, N.A. (2024). The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1), 1-45 [10.1016/j.jfa.2023.110177].
Hu, Bingyang; Huo, Zhenghui; Lanzani, Loredana; Palencia, Kevin; Wagner, Nathan A.
File in questo prodotto:
File Dimensione Formato  
Commutators_of_the_Bergman_Projection_ACCEPTED.pdf

Open Access dal 02/10/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 636.63 kB
Formato Adobe PDF
636.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact