Adenocarcinoma of the esophagus (EAC) and gastroesophageal junction (GEJ-AC) is associated with poor prognosis, treatment resistance and limited systemic therapeutic options. To deeply understand the genomic landscape of this cancer type, and potentially identify a therapeutic target in a neoadjuvant chemotherapy non-responder 48-year-old man, we adopted a multi-omic approach. We simultaneously evaluated gene rearrangements, mutations, copy number status, microsatellite instability and tumor mutation burden. The patient displayed pathogenic mutations of the TP53 and ATM genes and variants of uncertain significance of three kinases genes (ERBB3, CSNK1A1 and RPS6KB2), along with FGFR2 and KRAS high copy number amplification. Interestingly, transcriptomic analysis revealed the Musashi-2 (MSI2)-C17orf64 fusion that has never been reported before. Rearrangements of the RNA-binding protein MSI2 with a number of partner genes have been described across solid and hematological tumors. MSI2 regulates several biological processes involved in cancer initiation, development and resistance to treatment, and deserves further investigation as a potential therapeutic target. In conclusion, our extensive genomic characterization of a gastroesophageal tumor refractory to all therapeutic approaches led to the discovery of the MSI2-C17orf64 fusion. The results underlie the importance of deep molecular analyses enabling the identification of novel patient-specific markers to be monitored during therapy or even targeted at disease evolution.

Detection of a Novel MSI2-C17orf64 Transcript in a Patient with Aggressive Adenocarcinoma of the Gastroesophageal Junction: A Case Report / Ferrari A.; Fiocca R.; Bonora E.; Domizio C.; Fonzi E.; Angeli D.; Domenico Raulli G.; Mattioli S.; Martinelli G.; Molinari C.. - In: GENES. - ISSN 2073-4425. - ELETTRONICO. - 14:4(2023), pp. 918.918-918.927. [10.3390/genes14040918]

Detection of a Novel MSI2-C17orf64 Transcript in a Patient with Aggressive Adenocarcinoma of the Gastroesophageal Junction: A Case Report

Bonora E.;Mattioli S.;
2023

Abstract

Adenocarcinoma of the esophagus (EAC) and gastroesophageal junction (GEJ-AC) is associated with poor prognosis, treatment resistance and limited systemic therapeutic options. To deeply understand the genomic landscape of this cancer type, and potentially identify a therapeutic target in a neoadjuvant chemotherapy non-responder 48-year-old man, we adopted a multi-omic approach. We simultaneously evaluated gene rearrangements, mutations, copy number status, microsatellite instability and tumor mutation burden. The patient displayed pathogenic mutations of the TP53 and ATM genes and variants of uncertain significance of three kinases genes (ERBB3, CSNK1A1 and RPS6KB2), along with FGFR2 and KRAS high copy number amplification. Interestingly, transcriptomic analysis revealed the Musashi-2 (MSI2)-C17orf64 fusion that has never been reported before. Rearrangements of the RNA-binding protein MSI2 with a number of partner genes have been described across solid and hematological tumors. MSI2 regulates several biological processes involved in cancer initiation, development and resistance to treatment, and deserves further investigation as a potential therapeutic target. In conclusion, our extensive genomic characterization of a gastroesophageal tumor refractory to all therapeutic approaches led to the discovery of the MSI2-C17orf64 fusion. The results underlie the importance of deep molecular analyses enabling the identification of novel patient-specific markers to be monitored during therapy or even targeted at disease evolution.
2023
Detection of a Novel MSI2-C17orf64 Transcript in a Patient with Aggressive Adenocarcinoma of the Gastroesophageal Junction: A Case Report / Ferrari A.; Fiocca R.; Bonora E.; Domizio C.; Fonzi E.; Angeli D.; Domenico Raulli G.; Mattioli S.; Martinelli G.; Molinari C.. - In: GENES. - ISSN 2073-4425. - ELETTRONICO. - 14:4(2023), pp. 918.918-918.927. [10.3390/genes14040918]
Ferrari A.; Fiocca R.; Bonora E.; Domizio C.; Fonzi E.; Angeli D.; Domenico Raulli G.; Mattioli S.; Martinelli G.; Molinari C.
File in questo prodotto:
File Dimensione Formato  
genes-14-00918-v3Ferrari.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
genes-14-00918-s001 (1).zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 11.1 kB
Formato Zip File
11.1 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963839
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact