Background: Dual task assessments, which simultaneously challenge and assess cognitive and motor performance, have been used to improve the assessment of athletes with sports-related concussions (SRC). Our lab created a Dual Task Screen (DTS) to evaluate athletes with SRCs, and we have established that it is a valid behavioral measure, as it consistently elicits poorer behavioral performance under dual, compared to single, task conditions. Here, we used a Neuroimaging-Compatible (NC) version of the DTS, named the NC-DTS, which uses portable functional near-infrared spectroscopy (fNIRS) to assess behavioral performance and neural recruitment during single and dual tasks. Our study objective was to evaluate healthy athletes and establish whether the NC-DTS is a valid dual task neurological assessment that can elicit different patterns of neural recruitment during dual versus single task conditions. Methods: Twenty-five healthy collegiate athletes completed the NC-DTS in a single laboratory visit. The NC-DTS includes a lower and upper extremity subtask; both include single motor, single cognitive, and dual task conditions. The NC-DTS was administered in a block design, where conditions (i.e., single motor, single cognitive, and dual task) were repeated five times to generate average behavioral performance and task-dependent neural recruitment in superficial cortical regions including: prefrontal cortex, bilateral primary motor and sensory cortices, and posterior parietal cortex. Neural recruitment was measured with fNIRS and quantified using oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) metrics. A single-tailed, within subject t-test was used to compare average dual task behavioral performance to average single task behavioral performance. Pairwise comparisons, that were family-wise-error (FWE) corrected, were used to compare localized neural recruitment during dual versus single task conditions. Results: As observed in previous studies, the NC-DTS elicited significantly poorer behavioral performance under dual, compared to single, task conditions. Additionally, dual task conditions of the NC-DTS elicited significantly greater neural recruitment in regions of the brain associated with attention allocation and task-specific demands in three of four comparisons. Conclusions: These preliminary results suggest that the NC-DTS is a valid dual task neurological assessment which warrants future work using the NC-DTS to evaluate athletes with SRCs.

Stephens J.A., Mingils S., Orlandi S. (2023). Evaluating Dual Task Neurological Costs with Functional Near-Infrared Spectroscopy: A Preliminary Report in Healthy Athletes. JOURNAL OF INTEGRATIVE NEUROSCIENCE, 22(5), 1-16 [10.31083/j.jin2205133].

Evaluating Dual Task Neurological Costs with Functional Near-Infrared Spectroscopy: A Preliminary Report in Healthy Athletes

Orlandi S.
Ultimo
Writing – Review & Editing
2023

Abstract

Background: Dual task assessments, which simultaneously challenge and assess cognitive and motor performance, have been used to improve the assessment of athletes with sports-related concussions (SRC). Our lab created a Dual Task Screen (DTS) to evaluate athletes with SRCs, and we have established that it is a valid behavioral measure, as it consistently elicits poorer behavioral performance under dual, compared to single, task conditions. Here, we used a Neuroimaging-Compatible (NC) version of the DTS, named the NC-DTS, which uses portable functional near-infrared spectroscopy (fNIRS) to assess behavioral performance and neural recruitment during single and dual tasks. Our study objective was to evaluate healthy athletes and establish whether the NC-DTS is a valid dual task neurological assessment that can elicit different patterns of neural recruitment during dual versus single task conditions. Methods: Twenty-five healthy collegiate athletes completed the NC-DTS in a single laboratory visit. The NC-DTS includes a lower and upper extremity subtask; both include single motor, single cognitive, and dual task conditions. The NC-DTS was administered in a block design, where conditions (i.e., single motor, single cognitive, and dual task) were repeated five times to generate average behavioral performance and task-dependent neural recruitment in superficial cortical regions including: prefrontal cortex, bilateral primary motor and sensory cortices, and posterior parietal cortex. Neural recruitment was measured with fNIRS and quantified using oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) metrics. A single-tailed, within subject t-test was used to compare average dual task behavioral performance to average single task behavioral performance. Pairwise comparisons, that were family-wise-error (FWE) corrected, were used to compare localized neural recruitment during dual versus single task conditions. Results: As observed in previous studies, the NC-DTS elicited significantly poorer behavioral performance under dual, compared to single, task conditions. Additionally, dual task conditions of the NC-DTS elicited significantly greater neural recruitment in regions of the brain associated with attention allocation and task-specific demands in three of four comparisons. Conclusions: These preliminary results suggest that the NC-DTS is a valid dual task neurological assessment which warrants future work using the NC-DTS to evaluate athletes with SRCs.
2023
Stephens J.A., Mingils S., Orlandi S. (2023). Evaluating Dual Task Neurological Costs with Functional Near-Infrared Spectroscopy: A Preliminary Report in Healthy Athletes. JOURNAL OF INTEGRATIVE NEUROSCIENCE, 22(5), 1-16 [10.31083/j.jin2205133].
Stephens J.A.; Mingils S.; Orlandi S.
File in questo prodotto:
File Dimensione Formato  
1757-448X-22-5-133.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 5.08 MB
Formato Adobe PDF
5.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963652
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact