This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987.

Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device / Kirk C.; Kuderle A.; Mico-Amigo M.E.; Bonci T.; Paraschiv-Ionescu A.; Ullrich M.; Soltani A.; Gazit E.; Salis F.; Alcock L.; Aminian K.; Becker C.; Bertuletti S.; Brown P.; Buckley E.; Cantu A.; Carsin A.-E.; Caruso M.; Caulfield B.; Cereatti A.; Chiari L.; D'Ascanio I.; Garcia-Aymerich J.; Hansen C.; Hausdorff J.M.; Hiden H.; Hume E.; Keogh A.; Kluge F.; Koch S.; Maetzler W.; Megaritis D.; Mueller A.; Niessen M.; Palmerini L.; Schwickert L.; Scott K.; Sharrack B.; Sillen H.; Singleton D.; Vereijken B.; Vogiatzis I.; Yarnall A.J.; Rochester L.; Mazza C.; Eskofier B.M.; Del Din S.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 14:1(2024), pp. 1754.1-1754.23. [10.1038/s41598-024-51766-5]

Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

Chiari L.;D'Ascanio I.;Palmerini L.;
2024

Abstract

This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987.
2024
Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device / Kirk C.; Kuderle A.; Mico-Amigo M.E.; Bonci T.; Paraschiv-Ionescu A.; Ullrich M.; Soltani A.; Gazit E.; Salis F.; Alcock L.; Aminian K.; Becker C.; Bertuletti S.; Brown P.; Buckley E.; Cantu A.; Carsin A.-E.; Caruso M.; Caulfield B.; Cereatti A.; Chiari L.; D'Ascanio I.; Garcia-Aymerich J.; Hansen C.; Hausdorff J.M.; Hiden H.; Hume E.; Keogh A.; Kluge F.; Koch S.; Maetzler W.; Megaritis D.; Mueller A.; Niessen M.; Palmerini L.; Schwickert L.; Scott K.; Sharrack B.; Sillen H.; Singleton D.; Vereijken B.; Vogiatzis I.; Yarnall A.J.; Rochester L.; Mazza C.; Eskofier B.M.; Del Din S.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 14:1(2024), pp. 1754.1-1754.23. [10.1038/s41598-024-51766-5]
Kirk C.; Kuderle A.; Mico-Amigo M.E.; Bonci T.; Paraschiv-Ionescu A.; Ullrich M.; Soltani A.; Gazit E.; Salis F.; Alcock L.; Aminian K.; Becker C.; Bertuletti S.; Brown P.; Buckley E.; Cantu A.; Carsin A.-E.; Caruso M.; Caulfield B.; Cereatti A.; Chiari L.; D'Ascanio I.; Garcia-Aymerich J.; Hansen C.; Hausdorff J.M.; Hiden H.; Hume E.; Keogh A.; Kluge F.; Koch S.; Maetzler W.; Megaritis D.; Mueller A.; Niessen M.; Palmerini L.; Schwickert L.; Scott K.; Sharrack B.; Sillen H.; Singleton D.; Vereijken B.; Vogiatzis I.; Yarnall A.J.; Rochester L.; Mazza C.; Eskofier B.M.; Del Din S.
File in questo prodotto:
File Dimensione Formato  
insights Mobilise-d s41598-024-51766-5 (1).pdf

accesso aperto

Descrizione: Article PDF
Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/963325
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact