A mixture of regression models for multivariate observed variables which contextually involves a dimension reduction step through a linear factor model is proposed. The model estimation is performed via the EM-algorithm and a procedure to compute asymptotic standard errors for the parameter estimates is developed. The proposed approach is applied to the study of students satisfaction towards different aspects of their school as a function of various covariates.

A. Montanari, C. Viroli (2011). Dimensionally reduced mixtures of regression models. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 141, 1744-1752 [10.1016/j.jspi.2010.11.024].

Dimensionally reduced mixtures of regression models

MONTANARI, ANGELA;VIROLI, CINZIA
2011

Abstract

A mixture of regression models for multivariate observed variables which contextually involves a dimension reduction step through a linear factor model is proposed. The model estimation is performed via the EM-algorithm and a procedure to compute asymptotic standard errors for the parameter estimates is developed. The proposed approach is applied to the study of students satisfaction towards different aspects of their school as a function of various covariates.
2011
A. Montanari, C. Viroli (2011). Dimensionally reduced mixtures of regression models. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 141, 1744-1752 [10.1016/j.jspi.2010.11.024].
A. Montanari; C. Viroli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/96300
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact