We study here the spectral Weyl asymptotics for a semiregular system, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. The class of systems considered here contains the important example of the Jaynes–Cummings system that describes light-matter interaction.
M. Malagutti, A. Parmeggiani (2024). Spectral Asymptotic Properties of Semiregular Non-commutative Harmonic Oscillators. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 405(2), 1-49 [10.1007/s00220-024-04934-7].
Spectral Asymptotic Properties of Semiregular Non-commutative Harmonic Oscillators
M. Malagutti;A. Parmeggiani
2024
Abstract
We study here the spectral Weyl asymptotics for a semiregular system, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. The class of systems considered here contains the important example of the Jaynes–Cummings system that describes light-matter interaction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00220-024-04934-7.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
640.45 kB
Formato
Adobe PDF
|
640.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.