We study here the spectral Weyl asymptotics for a semiregular system, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. The class of systems considered here contains the important example of the Jaynes–Cummings system that describes light-matter interaction.

M. Malagutti, A. Parmeggiani (2024). Spectral Asymptotic Properties of Semiregular Non-commutative Harmonic Oscillators. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 405(2), 1-49 [10.1007/s00220-024-04934-7].

Spectral Asymptotic Properties of Semiregular Non-commutative Harmonic Oscillators

M. Malagutti;A. Parmeggiani
2024

Abstract

We study here the spectral Weyl asymptotics for a semiregular system, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. The class of systems considered here contains the important example of the Jaynes–Cummings system that describes light-matter interaction.
2024
M. Malagutti, A. Parmeggiani (2024). Spectral Asymptotic Properties of Semiregular Non-commutative Harmonic Oscillators. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 405(2), 1-49 [10.1007/s00220-024-04934-7].
M. Malagutti; A. Parmeggiani
File in questo prodotto:
File Dimensione Formato  
s00220-024-04934-7.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 640.45 kB
Formato Adobe PDF
640.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact