Source code similarity aims at recognizing common characteristics between two different codes by means of their components. It plays a significant role in many activities regarding software development and analysis which have the potential of assisting software teams working on large codebases. Existing approaches aim at computing similarity between two codes by suitable representation of them which captures syntactic and semantic properties. However, they lack explainability and generalization for multiple languages comparison. Here, we present a preliminary result that attempts at providing a graph-focused representation of code by means of which clustering and classification of programs is possible while exposing explainability and generalizability characteristics.

Boldini, G., Diana, A., Arceri, V., Bonnici, V., Bagnara, R. (2024). A Machine Learning Approach for Source Code Similarity via Graph-Focused Features [10.1007/978-3-031-53969-5_5].

A Machine Learning Approach for Source Code Similarity via Graph-Focused Features

Diana, Alessio;
2024

Abstract

Source code similarity aims at recognizing common characteristics between two different codes by means of their components. It plays a significant role in many activities regarding software development and analysis which have the potential of assisting software teams working on large codebases. Existing approaches aim at computing similarity between two codes by suitable representation of them which captures syntactic and semantic properties. However, they lack explainability and generalization for multiple languages comparison. Here, we present a preliminary result that attempts at providing a graph-focused representation of code by means of which clustering and classification of programs is possible while exposing explainability and generalizability characteristics.
2024
Lecture Notes in Computer Science
53
67
Boldini, G., Diana, A., Arceri, V., Bonnici, V., Bagnara, R. (2024). A Machine Learning Approach for Source Code Similarity via Graph-Focused Features [10.1007/978-3-031-53969-5_5].
Boldini, Giacomo; Diana, Alessio; Arceri, Vincenzo; Bonnici, Vincenzo; Bagnara, Roberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact