Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.

Mazzola, F., Enzner, S., Eck, P., Bigi, C., Jugovac, M., Cojocariu, I., et al. (2023). Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Lattice. NANO LETTERS, 23(17), 8035-8042 [10.1021/acs.nanolett.3c02022].

Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Lattice

Di Sante, Domenico;
2023

Abstract

Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.
2023
Mazzola, F., Enzner, S., Eck, P., Bigi, C., Jugovac, M., Cojocariu, I., et al. (2023). Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Lattice. NANO LETTERS, 23(17), 8035-8042 [10.1021/acs.nanolett.3c02022].
Mazzola, Federico; Enzner, Stefan; Eck, Philipp; Bigi, Chiara; Jugovac, Matteo; Cojocariu, Iulia; Feyer, Vitaliy; Shu, Zhixue; Pierantozzi, Gian Marco...espandi
File in questo prodotto:
File Dimensione Formato  
Mazzola et al. - 2023 - Observation of Termination-Dependent Topological C.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 8.19 MB
Formato Adobe PDF
8.19 MB Adobe PDF Visualizza/Apri
nl3c02022_si_001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 32.26 MB
Formato Adobe PDF
32.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962428
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact