The black-box architecture of pretrained language models (PLMs) hinders the interpretability of lengthy responses in long-form question answering (LFQA). Prior studies use knowledge graphs (KGs) to enhance output transparency, but mostly focus on non-generative or short-form QA. We present Revelio, a new layer that maps PLM's inner working onto a KG walk. Tests on two LFQA datasets show that Revelio supports PLM-generated answers with reasoning paths presented as rationales while retaining performance and time akin to their vanilla counterparts.

Gianluca Moro, L.R. (2024). Revelio: Interpretable Long-Form Question Answering.

Revelio: Interpretable Long-Form Question Answering

Gianluca Moro;Luca Ragazzi
;
Lorenzo Valgimigli;
2024

Abstract

The black-box architecture of pretrained language models (PLMs) hinders the interpretability of lengthy responses in long-form question answering (LFQA). Prior studies use knowledge graphs (KGs) to enhance output transparency, but mostly focus on non-generative or short-form QA. We present Revelio, a new layer that maps PLM's inner working onto a KG walk. Tests on two LFQA datasets show that Revelio supports PLM-generated answers with reasoning paths presented as rationales while retaining performance and time akin to their vanilla counterparts.
2024
The Second Tiny Papers Track at ICLR 2024
1
9
Gianluca Moro, L.R. (2024). Revelio: Interpretable Long-Form Question Answering.
Gianluca Moro, Luca Ragazzi, Lorenzo Valgimigli, Fabian Vincenzi, Davide Freddi
File in questo prodotto:
File Dimensione Formato  
revelio_iclr24.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 574.17 kB
Formato Adobe PDF
574.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact