In this paper we study 0-dimensional schemes Z made of "fat points" in Pn, n at least 2, whose support lies on a rational normal curve. We conjecture that the Hilbert function of Z does not depend on the choice of the points and we show this under some numerical hypotheses. We also study the Hilbert Function of the infinitesimal neighborhoods of the rational normal curve and we find the value where it coincides with the Hilbert Polynomial.

Catalisano M.V., Ellia P., Gimigliano A. (1999). Fat points on rational normal curves. JOURNAL OF ALGEBRA, 216(2), 600-619 [10.1006/jabr.1998.7761].

Fat points on rational normal curves

Gimigliano A.
1999

Abstract

In this paper we study 0-dimensional schemes Z made of "fat points" in Pn, n at least 2, whose support lies on a rational normal curve. We conjecture that the Hilbert function of Z does not depend on the choice of the points and we show this under some numerical hypotheses. We also study the Hilbert Function of the infinitesimal neighborhoods of the rational normal curve and we find the value where it coincides with the Hilbert Polynomial.
1999
Catalisano M.V., Ellia P., Gimigliano A. (1999). Fat points on rational normal curves. JOURNAL OF ALGEBRA, 216(2), 600-619 [10.1006/jabr.1998.7761].
Catalisano M.V.; Ellia P.; Gimigliano A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/962033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact