Future networks will allow achieving high level of connectivity to respond to novel application needs. In this work we analyzed system performance in terms of extreme indoor connectivity for different IoT enabling technologies for smart grid applications. To this aim we tested and compared in terms of measurements and simulations two IoT solutions available nowadays: Licensed Cellular based solution (i.e. NB-IoT) and proprietary Long Range based solution (i.e. LoRa). Specifically, measurements have been performed by acquiring connectivity levels in extreme propagation conditions, such as buried location in the premises of the Test Facility of RSE (Ricerca di Sistema Elettrico - the main Italian Energy Research Center); simulations have been carried out through a simulation tool with deterministic propagation models based on 'Ray Tracing' techniques, taking into account also the attenuation of the terrain and the effect of surrounding buildings. The analysis allows acquiring connectivity information in deep Non Line of Sight environment (i.e.: underneath electric cables monitoring applications). This study will provide useful indications for the IoT solution of the future 5G network: the mMTC (massive Machine Type Communication) paradigm for innovative smart city services.

S. Persia, C.C. (2019). IoT Enabling Technologies for Extreme Connectivity Smart Grid Applications. Institute of Electrical and Electronics Engineers Inc. [10.1109/CTTE-FITCE.2019.8894819].

IoT Enabling Technologies for Extreme Connectivity Smart Grid Applications

M. Barbiroli;
2019

Abstract

Future networks will allow achieving high level of connectivity to respond to novel application needs. In this work we analyzed system performance in terms of extreme indoor connectivity for different IoT enabling technologies for smart grid applications. To this aim we tested and compared in terms of measurements and simulations two IoT solutions available nowadays: Licensed Cellular based solution (i.e. NB-IoT) and proprietary Long Range based solution (i.e. LoRa). Specifically, measurements have been performed by acquiring connectivity levels in extreme propagation conditions, such as buried location in the premises of the Test Facility of RSE (Ricerca di Sistema Elettrico - the main Italian Energy Research Center); simulations have been carried out through a simulation tool with deterministic propagation models based on 'Ray Tracing' techniques, taking into account also the attenuation of the terrain and the effect of surrounding buildings. The analysis allows acquiring connectivity information in deep Non Line of Sight environment (i.e.: underneath electric cables monitoring applications). This study will provide useful indications for the IoT solution of the future 5G network: the mMTC (massive Machine Type Communication) paradigm for innovative smart city services.
2019
2019 CTTE-FITCE: Smart Cities and Information and Communication Technology, CTTE-FITCE 2019
1
6
S. Persia, C.C. (2019). IoT Enabling Technologies for Extreme Connectivity Smart Grid Applications. Institute of Electrical and Electronics Engineers Inc. [10.1109/CTTE-FITCE.2019.8894819].
S. Persia, C. Carciofi, M. Barbiroli, M. Teodori, V. Petrini, A. Garzia, M. Faccioli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/961975
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact