Let Kn be Kiselman's semigroup. We show that the sequence 2^{-n/2} log|Kn| admits finite nonzero limits as n grown to infinity both on odd and even values.

Alessandro D'Andrea, S.S. (2023). The cardinality of Kiselman’s semigroups grows double-exponentially. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY SIMON STEVIN, 30(5), 570-576 [10.36045/j.bbms.221112].

The cardinality of Kiselman’s semigroups grows double-exponentially

Alessandro D'Andrea
;
2023

Abstract

Let Kn be Kiselman's semigroup. We show that the sequence 2^{-n/2} log|Kn| admits finite nonzero limits as n grown to infinity both on odd and even values.
2023
Alessandro D'Andrea, S.S. (2023). The cardinality of Kiselman’s semigroups grows double-exponentially. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY SIMON STEVIN, 30(5), 570-576 [10.36045/j.bbms.221112].
Alessandro D'Andrea, Salvatore Stella
File in questo prodotto:
File Dimensione Formato  
kiselcard11_finale.pdf

Open Access dal 13/08/2024

Descrizione: Versione personale autore
Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 126.41 kB
Formato Adobe PDF
126.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/961648
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact