The decline in fresh milk in the Western world has in part been substituted by an increased consumption of plant-based beverages (PBB). These are often marketed as healthy and sustainable alternatives to milk and dairy foodstuff, although studies have suggested PBB to be of lower nutrient quality. The current study considered different brands of almond-, oat-, rice-, coconut- and soya-based beverages for a comparative analysis and found that they indeed presented lower contents of total protein, lipids, amino acids, and minerals than cow and goat milk. The only exception was given by soya-based beverages which approximated the protein content (3.47% vs. 3.42 and 3.25% in cow and goat milk, respectively) and amino acid composition of animal milk, and also demonstrated high mineral content. The natural presence of phyto-compounds in PBB characterised as antinutrients and their potential to exacerbate the issue of low nutrient quality by lowering bioavailability have been discussed.

Moore S.S., Costa A., Pozza M., Vamerali T., Niero G., Censi S., et al. (2023). How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition. NPJ SCIENCE OF FOOD, 7(1), 50-61 [10.1038/s41538-023-00227-w].

How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition

Costa A.
;
2023

Abstract

The decline in fresh milk in the Western world has in part been substituted by an increased consumption of plant-based beverages (PBB). These are often marketed as healthy and sustainable alternatives to milk and dairy foodstuff, although studies have suggested PBB to be of lower nutrient quality. The current study considered different brands of almond-, oat-, rice-, coconut- and soya-based beverages for a comparative analysis and found that they indeed presented lower contents of total protein, lipids, amino acids, and minerals than cow and goat milk. The only exception was given by soya-based beverages which approximated the protein content (3.47% vs. 3.42 and 3.25% in cow and goat milk, respectively) and amino acid composition of animal milk, and also demonstrated high mineral content. The natural presence of phyto-compounds in PBB characterised as antinutrients and their potential to exacerbate the issue of low nutrient quality by lowering bioavailability have been discussed.
2023
Moore S.S., Costa A., Pozza M., Vamerali T., Niero G., Censi S., et al. (2023). How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition. NPJ SCIENCE OF FOOD, 7(1), 50-61 [10.1038/s41538-023-00227-w].
Moore S.S.; Costa A.; Pozza M.; Vamerali T.; Niero G.; Censi S.; De Marchi M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/961586
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact