Communications in the mmWave and THz bands will be a key technological pillar for next-generation wireless networks. However, the increase in frequency results in an increase in path loss, which must be compensated for by using large antenna arrays. This introduces challenging issues due to power consumption, signalling overhead for channel estimation, hardware complexity, and slow beamforming and beam alignment schemes, which are in contrast with the requirements of next-generation wireless networks. In this paper, we propose the adoption of a retro-directive antenna array (RAA) at the user equipment (UE) side, where the signal sent by the base station (BS) is reflected towards the source after being conjugated and phase-modulated according to the UE data. By making use of modified Power Methods for the computation of the eigenvectors of the resulting round-trip channel, it is shown that, in single and multi-user multiple-input multiple-output (MIMO) scenarios, ultra-low complexity UEs can establish parallel communication links automatically with the BS in a very short time. This is done in a blind way, also by tracking fast channel variations while communicating, without the need for ADC chains at the UE as well as without explicit channel estimation and time-consuming beamforming and beam alignment schemes.
Dardari D., Lotti M., Decarli N., Pasolini G. (2023). Establishing Multi-User MIMO Communications Automatically Using Retrodirective Arrays. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 4, 1396-1416 [10.1109/OJCOMS.2023.3289326].
Establishing Multi-User MIMO Communications Automatically Using Retrodirective Arrays
Dardari D.
Primo
Conceptualization
;Lotti M.;Decarli N.;Pasolini G.
2023
Abstract
Communications in the mmWave and THz bands will be a key technological pillar for next-generation wireless networks. However, the increase in frequency results in an increase in path loss, which must be compensated for by using large antenna arrays. This introduces challenging issues due to power consumption, signalling overhead for channel estimation, hardware complexity, and slow beamforming and beam alignment schemes, which are in contrast with the requirements of next-generation wireless networks. In this paper, we propose the adoption of a retro-directive antenna array (RAA) at the user equipment (UE) side, where the signal sent by the base station (BS) is reflected towards the source after being conjugated and phase-modulated according to the UE data. By making use of modified Power Methods for the computation of the eigenvectors of the resulting round-trip channel, it is shown that, in single and multi-user multiple-input multiple-output (MIMO) scenarios, ultra-low complexity UEs can establish parallel communication links automatically with the BS in a very short time. This is done in a blind way, also by tracking fast channel variations while communicating, without the need for ADC chains at the UE as well as without explicit channel estimation and time-consuming beamforming and beam alignment schemes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.