Natural fibers were used to modify alkali-activated fly-ash mortars. Arundo donax is a common, fast-growing, widespread plant with interesting mechanical properties. Short fibers of different lengths (from 5 to 15 mm) were added at a 3 wt% ratio to the binder amount to the alkali-activated fly-ash matrix. The possible effects on the fresh and cured properties of the mortars deriving from the different lengths of the reinforcing phase were investigated. The flexural strength of the mortars increased by up to 30% at the longest fiber dimensions, while the compressive strength remained almost unchanged in all of the compositions. The dimensional stability was increased slightly upon the addition of the fibers, depending on the fiber length, while the porosity of the mortars was reduced. Moreover, contrary to what was expected, the water permeability was not increased by the fibers' addition, irrespective of their length. The durability of the obtained mortars was tested through freeze-thaw and thermo-hygrometric cycles. The results obtained so far underline a fair resistance to the changes in temperature and moisture and a better resistance to the freeze-thaw stresses of the reinforced mortars.

Alkali-Activated Mortars Reinforced with Arundo donax: Properties and Durability to Environmental Stresses

Manzi S.
Primo
;
Molari L.
Secondo
;
Totaro G.
Penultimo
;
Saccani A.
Ultimo
2023

Abstract

Natural fibers were used to modify alkali-activated fly-ash mortars. Arundo donax is a common, fast-growing, widespread plant with interesting mechanical properties. Short fibers of different lengths (from 5 to 15 mm) were added at a 3 wt% ratio to the binder amount to the alkali-activated fly-ash matrix. The possible effects on the fresh and cured properties of the mortars deriving from the different lengths of the reinforcing phase were investigated. The flexural strength of the mortars increased by up to 30% at the longest fiber dimensions, while the compressive strength remained almost unchanged in all of the compositions. The dimensional stability was increased slightly upon the addition of the fibers, depending on the fiber length, while the porosity of the mortars was reduced. Moreover, contrary to what was expected, the water permeability was not increased by the fibers' addition, irrespective of their length. The durability of the obtained mortars was tested through freeze-thaw and thermo-hygrometric cycles. The results obtained so far underline a fair resistance to the changes in temperature and moisture and a better resistance to the freeze-thaw stresses of the reinforced mortars.
2023
Manzi S.; Molari L.; Totaro G.; Saccani A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/960744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact