Transport and particulate processes are ubiquitous in environmental, industrial and biological applications, often involving complex geometries and porous media. In this work we present a general population balance model for particle transport at the pore-scale, including aggregation, breakage and surface deposition. The various terms in the equations are analysed with a dimensional analysis, including a novel collision-induced breakage mechanism, and split into one- and two-particles processes. While the first are linear processes, they might both depend on local flow properties (e.g. shear). This means that the upscaling (via volume averaging and homogenisation) to a macroscopic (Darcy-scale) description requires closures assumptions. We discuss this problem and derive an effective macroscopic term for the shear-induced events, such as breakage caused by shear forces on the transported particles. We focus on breakage events as prototype for linear shear-induced events and derive upscaled breakage frequencies in periodic geometries, starting from nonlinear power-law dependence on the local fluid shear rate. Results are presented for a two-dimensional channel flow and a three dimensional regular arrangement of spheres, for arbitrarily fast (mixing-limited) events. Implications for linearised shear-induced collisions are also discussed. This work lays the foundations of a new general framework for multiscale modelling of particulate flows.
Icardi M., Di Pasquale N., Crevacore E., Marchisio D., Babler M.U. (2023). Population Balance Models for Particulate Flows in Porous Media: Breakage and Shear-Induced Events. TRANSPORT IN POROUS MEDIA, 146, 197-222 [10.1007/s11242-022-01793-5].
Population Balance Models for Particulate Flows in Porous Media: Breakage and Shear-Induced Events
Di Pasquale N.Secondo
;
2023
Abstract
Transport and particulate processes are ubiquitous in environmental, industrial and biological applications, often involving complex geometries and porous media. In this work we present a general population balance model for particle transport at the pore-scale, including aggregation, breakage and surface deposition. The various terms in the equations are analysed with a dimensional analysis, including a novel collision-induced breakage mechanism, and split into one- and two-particles processes. While the first are linear processes, they might both depend on local flow properties (e.g. shear). This means that the upscaling (via volume averaging and homogenisation) to a macroscopic (Darcy-scale) description requires closures assumptions. We discuss this problem and derive an effective macroscopic term for the shear-induced events, such as breakage caused by shear forces on the transported particles. We focus on breakage events as prototype for linear shear-induced events and derive upscaled breakage frequencies in periodic geometries, starting from nonlinear power-law dependence on the local fluid shear rate. Results are presented for a two-dimensional channel flow and a three dimensional regular arrangement of spheres, for arbitrarily fast (mixing-limited) events. Implications for linearised shear-induced collisions are also discussed. This work lays the foundations of a new general framework for multiscale modelling of particulate flows.File | Dimensione | Formato | |
---|---|---|---|
s11242-022-01793-5.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.