Molecular dynamics represents a key enabling technology for applications ranging from biology to the development of new materials. However, many real-world applications remain inaccessible to fully resolved simulations due to their unsustainable computational costs and must therefore rely on semiempirical coarse-grained models. Significant efforts have been devoted in the last decade towards improving the predictivity of these coarse-grained models and providing a rigorous justification of their use, through a combination of theoretical studies and data-driven approaches. One of the most promising research efforts is the (re)discovery of the Mori-Zwanzig projection as a generic, yet systematic, theoretical tool for deriving coarse-grained models. Despite its clean mathematical formulation and generality, there are still many open questions about its applicability and assumptions. In this work, we propose a detailed derivation of a hybrid multiscale system, generalizing and further investigating the approach developed in Espanol [Europhys. Lett. 88, 40008 (2009)]. Issues such as the general coexistence of atoms (fully resolved degrees of freedom) and beads (larger coarse-grained units), the role of the fine-to-coarse mapping chosen, and the approximation of effective potentials are discussed. The theoretical discussion is supported by numerical simulations of a monodimensional nonlinear periodic benchmark system with an open-source parallel Julia code, easily extensible to arbitrary potential models and fine-to-coarse mapping functions. The results presented highlight the importance of introducing, in the macroscopic model, nonconstant fluctuating and dissipative terms, given by the Mori-Zwanzig approach, to correctly reproduce the reference fine-grained results, without requiring ad hoc calibration of interaction potentials and thermostats.

Systematic derivation of hybrid coarse-grained models / Di Pasquale N.; Hudson T.; Icardi M.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - ELETTRONICO. - 99:1(2019), pp. 013303.013303-013303.013303. [10.1103/PhysRevE.99.013303]

Systematic derivation of hybrid coarse-grained models

Di Pasquale N.
Primo
;
2019

Abstract

Molecular dynamics represents a key enabling technology for applications ranging from biology to the development of new materials. However, many real-world applications remain inaccessible to fully resolved simulations due to their unsustainable computational costs and must therefore rely on semiempirical coarse-grained models. Significant efforts have been devoted in the last decade towards improving the predictivity of these coarse-grained models and providing a rigorous justification of their use, through a combination of theoretical studies and data-driven approaches. One of the most promising research efforts is the (re)discovery of the Mori-Zwanzig projection as a generic, yet systematic, theoretical tool for deriving coarse-grained models. Despite its clean mathematical formulation and generality, there are still many open questions about its applicability and assumptions. In this work, we propose a detailed derivation of a hybrid multiscale system, generalizing and further investigating the approach developed in Espanol [Europhys. Lett. 88, 40008 (2009)]. Issues such as the general coexistence of atoms (fully resolved degrees of freedom) and beads (larger coarse-grained units), the role of the fine-to-coarse mapping chosen, and the approximation of effective potentials are discussed. The theoretical discussion is supported by numerical simulations of a monodimensional nonlinear periodic benchmark system with an open-source parallel Julia code, easily extensible to arbitrary potential models and fine-to-coarse mapping functions. The results presented highlight the importance of introducing, in the macroscopic model, nonconstant fluctuating and dissipative terms, given by the Mori-Zwanzig approach, to correctly reproduce the reference fine-grained results, without requiring ad hoc calibration of interaction potentials and thermostats.
2019
Systematic derivation of hybrid coarse-grained models / Di Pasquale N.; Hudson T.; Icardi M.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - ELETTRONICO. - 99:1(2019), pp. 013303.013303-013303.013303. [10.1103/PhysRevE.99.013303]
Di Pasquale N.; Hudson T.; Icardi M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/960181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact