Gas flows in the presence of two independently rotating nested bars remain not fully understood but are likely to play an important role in fueling the central black hole. We use high-resolution hydrodynamical simulations with detailed models of subgrid physics to study this problem. Our results show that the inner bar in double-barred galaxies can help drive gas flow from the nuclear ring to the center. In contrast, gas inflow usually stalls at the nuclear ring in single-barred galaxies. The inner bar causes a quasiperiodic inflow with a frequency determined by the difference between the two bar pattern speeds. We find that the star formation rate is higher in the model with two bars than in that with one bar. The inner bar in our model gradually weakens and dissolves due to gas inflow over a few billion years. Star formation produces metal-rich/alpha-poor stars, which slows the weakening of the inner bar but does not halt its eventual decay. We also present a qualitative comparison of the gas morphology and kinematics in our simulations with those of observed double-barred galaxies.

Li, Z., Du, M., Debattista, V.P., Shen, J., Li, H., Liu, J., et al. (2023). How Nested Bars Enhance, Modulate, and Are Destroyed by Gas Inflows. THE ASTROPHYSICAL JOURNAL, 958(1), 1-15 [10.3847/1538-4357/acffb3].

How Nested Bars Enhance, Modulate, and Are Destroyed by Gas Inflows

Marinacci, Federico;
2023

Abstract

Gas flows in the presence of two independently rotating nested bars remain not fully understood but are likely to play an important role in fueling the central black hole. We use high-resolution hydrodynamical simulations with detailed models of subgrid physics to study this problem. Our results show that the inner bar in double-barred galaxies can help drive gas flow from the nuclear ring to the center. In contrast, gas inflow usually stalls at the nuclear ring in single-barred galaxies. The inner bar causes a quasiperiodic inflow with a frequency determined by the difference between the two bar pattern speeds. We find that the star formation rate is higher in the model with two bars than in that with one bar. The inner bar in our model gradually weakens and dissolves due to gas inflow over a few billion years. Star formation produces metal-rich/alpha-poor stars, which slows the weakening of the inner bar but does not halt its eventual decay. We also present a qualitative comparison of the gas morphology and kinematics in our simulations with those of observed double-barred galaxies.
2023
Li, Z., Du, M., Debattista, V.P., Shen, J., Li, H., Liu, J., et al. (2023). How Nested Bars Enhance, Modulate, and Are Destroyed by Gas Inflows. THE ASTROPHYSICAL JOURNAL, 958(1), 1-15 [10.3847/1538-4357/acffb3].
Li, Zhi; Du, Min; Debattista, Victor P.; Shen, Juntai; Li, Hui; Liu, Jie; Vogelsberger, Mark; Beane, Angus; Marinacci, Federico; Sales, Laura V....espandi
File in questo prodotto:
File Dimensione Formato  
Li_2023_ApJ_958_77.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 48.69 MB
Formato Adobe PDF
48.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact