Technical advances in microsurgery have enabled complex oncological reconstructions by performing free tissue transfers, nerve and lymphatic reconstructions. However, the manual abilities required to perform microsurgery can be affected by human fatigue and physiological tremor resulting in tissue damage and compromised outcomes. Robotic assistance has the potential to overcome issues of manual microsurgery by improving clinical value and anastomoses’ outcomes. The Symani Surgical System, a robotic platform designed for microsurgery, was used in this in-vivo preclinical study using a rat animal model. The tests included anastomoses on veins and arteries performed by microsurgeons manually and robotically, with the latter approach using Symani. The anastomoses were assessed for patency, histopathology, and execution time. Patency results confirmed that the robotic and manual techniques for venous and arterial anastomoses were equivalent after anastomosis, however, the time to perform the anastomosis was longer with the use of the robot (p < 0.0001). Histological analysis showed less total average host reaction score at the anastomotic site in robotic anastomosis for both veins and arteries. This study demonstrates the equivalence of vessel patency after microsurgical anastomoses with the robotic system and with manual technique. Furthermore, robotic anastomosis has proven to be slightly superior to manual anastomosis in terms of decreased tissue damage, as shown by histological analysis.

Malzone G., Menichini G., Innocenti M., Ballestin A. (2023). Microsurgical robotic system enables the performance of microvascular anastomoses: a randomized in vivo preclinical trial. SCIENTIFIC REPORTS, 13(1), 1-8 [10.1038/s41598-023-41143-z].

Microsurgical robotic system enables the performance of microvascular anastomoses: a randomized in vivo preclinical trial

Innocenti M.;
2023

Abstract

Technical advances in microsurgery have enabled complex oncological reconstructions by performing free tissue transfers, nerve and lymphatic reconstructions. However, the manual abilities required to perform microsurgery can be affected by human fatigue and physiological tremor resulting in tissue damage and compromised outcomes. Robotic assistance has the potential to overcome issues of manual microsurgery by improving clinical value and anastomoses’ outcomes. The Symani Surgical System, a robotic platform designed for microsurgery, was used in this in-vivo preclinical study using a rat animal model. The tests included anastomoses on veins and arteries performed by microsurgeons manually and robotically, with the latter approach using Symani. The anastomoses were assessed for patency, histopathology, and execution time. Patency results confirmed that the robotic and manual techniques for venous and arterial anastomoses were equivalent after anastomosis, however, the time to perform the anastomosis was longer with the use of the robot (p < 0.0001). Histological analysis showed less total average host reaction score at the anastomotic site in robotic anastomosis for both veins and arteries. This study demonstrates the equivalence of vessel patency after microsurgical anastomoses with the robotic system and with manual technique. Furthermore, robotic anastomosis has proven to be slightly superior to manual anastomosis in terms of decreased tissue damage, as shown by histological analysis.
2023
Malzone G., Menichini G., Innocenti M., Ballestin A. (2023). Microsurgical robotic system enables the performance of microvascular anastomoses: a randomized in vivo preclinical trial. SCIENTIFIC REPORTS, 13(1), 1-8 [10.1038/s41598-023-41143-z].
Malzone G.; Menichini G.; Innocenti M.; Ballestin A.
File in questo prodotto:
File Dimensione Formato  
41598_2023_Article_41143.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
41598_2023_41143_MOESM1_ESM.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 33.92 kB
Formato Microsoft Word XML
33.92 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959437
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact