The rearrangement of allyl p-dimethylaminobenzenesulphonate (ASE) to form a zwitterionic product has already been recognized as an effective probe for the study of reactivity within the smectic B phase [4, 5, 19]. We have used deuterium NMR, linear dichroism and X-ray diffraction techniques to investigate the phase diagram of the ASE-OS35 reaction system. The partitioning of the reactant molecules between coexisting smectic, nematic and/or isotropic phases and the structural organization of the smectic catalytic host at different temperatures and reactant guest concentrations have been characterized. On the basis of these measurements, a model of ASE reactivity in smectic solvents has been developed. The reaction takes place provided that coexisting isotropic or nematic phases are present to act as a reservoir for the ASE reactant molecules prior to their entering the smectic phase; they then react and leave the smectic phase as a zwitterionic product. The analogy between this model of reactivity within smectic phases and the Michaelis-Menten enzyme processes is discussed. This relationship opens up the intriguing possibility of designing new experiments with which to investigate further liquid crystalline models of enzyme catalysis. © Taylor & Francis Group, LLC.

Chemical reactivity within a smectic B liquid crystalline phase: A model of enzyme catalysis? / Samori B.; Masiero S.; Luckhurst G.R.; Heeks S.K.; Timimi B.A.; Mariani P.. - In: LIQUID CRYSTALS. - ISSN 0267-8292. - STAMPA. - 15:2(1993), pp. 217-231. [10.1080/02678299308031952]

Chemical reactivity within a smectic B liquid crystalline phase: A model of enzyme catalysis?

Masiero S.;
1993

Abstract

The rearrangement of allyl p-dimethylaminobenzenesulphonate (ASE) to form a zwitterionic product has already been recognized as an effective probe for the study of reactivity within the smectic B phase [4, 5, 19]. We have used deuterium NMR, linear dichroism and X-ray diffraction techniques to investigate the phase diagram of the ASE-OS35 reaction system. The partitioning of the reactant molecules between coexisting smectic, nematic and/or isotropic phases and the structural organization of the smectic catalytic host at different temperatures and reactant guest concentrations have been characterized. On the basis of these measurements, a model of ASE reactivity in smectic solvents has been developed. The reaction takes place provided that coexisting isotropic or nematic phases are present to act as a reservoir for the ASE reactant molecules prior to their entering the smectic phase; they then react and leave the smectic phase as a zwitterionic product. The analogy between this model of reactivity within smectic phases and the Michaelis-Menten enzyme processes is discussed. This relationship opens up the intriguing possibility of designing new experiments with which to investigate further liquid crystalline models of enzyme catalysis. © Taylor & Francis Group, LLC.
1993
Chemical reactivity within a smectic B liquid crystalline phase: A model of enzyme catalysis? / Samori B.; Masiero S.; Luckhurst G.R.; Heeks S.K.; Timimi B.A.; Mariani P.. - In: LIQUID CRYSTALS. - ISSN 0267-8292. - STAMPA. - 15:2(1993), pp. 217-231. [10.1080/02678299308031952]
Samori B.; Masiero S.; Luckhurst G.R.; Heeks S.K.; Timimi B.A.; Mariani P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact