We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.

Villanueva-Domingo, P., Villaescusa-Navarro, F., Genel, S., Anglés-Alcázar, D., Hernquist, L., Marinacci, F., et al. (2023). Weighing the Milky Way and Andromeda galaxies with artificial intelligence. PHYSICAL REVIEW D, 107(10), 1-8 [10.1103/physrevd.107.103003].

Weighing the Milky Way and Andromeda galaxies with artificial intelligence

Marinacci, Federico;
2023

Abstract

We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.
2023
Villanueva-Domingo, P., Villaescusa-Navarro, F., Genel, S., Anglés-Alcázar, D., Hernquist, L., Marinacci, F., et al. (2023). Weighing the Milky Way and Andromeda galaxies with artificial intelligence. PHYSICAL REVIEW D, 107(10), 1-8 [10.1103/physrevd.107.103003].
Villanueva-Domingo, Pablo; Villaescusa-Navarro, Francisco; Genel, Shy; Anglés-Alcázar, Daniel; Hernquist, Lars; Marinacci, Federico; Spergel, David N....espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevD.107.103003.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 986.2 kB
Formato Adobe PDF
986.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact