We give a proof of Holder continuity for bounded local weak solutions to the equation(& lowast;) u(t) = Sigma(N)(i=1)(|u(xi)|(p)(i)-2u(xi))(xi) , in Omega(T) = Omega x (0, T], with Omega subset of subset of R-N,under the condition 2 < p(i) < p(1 + 2/N) for each i = 1, .., N, being p the harmonic mean of the p(i)s, via recently discovered intrinsic Harnack estimates. Moreover, we establish an equivalent formulation of these Harnack estimates within the proper intrinsic geometry.
Simone CİANİ, Vincenzo VESPRI (2021). On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation. CONSTRUCTIVE MATHEMATICAL ANALYSIS, 4(1), 93-103 [10.33205/cma.824336].
On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation
Simone CİANİ;Vincenzo VESPRI
2021
Abstract
We give a proof of Holder continuity for bounded local weak solutions to the equation(& lowast;) u(t) = Sigma(N)(i=1)(|u(xi)|(p)(i)-2u(xi))(xi) , in Omega(T) = Omega x (0, T], with Omega subset of subset of R-N,under the condition 2 < p(i) < p(1 + 2/N) for each i = 1, .., N, being p the harmonic mean of the p(i)s, via recently discovered intrinsic Harnack estimates. Moreover, we establish an equivalent formulation of these Harnack estimates within the proper intrinsic geometry.File | Dimensione | Formato | |
---|---|---|---|
CMA.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
426.07 kB
Formato
Adobe PDF
|
426.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.