We give a proof of Holder continuity for bounded local weak solutions to the equation(& lowast;) u(t) = Sigma(N)(i=1)(|u(xi)|(p)(i)-2u(xi))(xi) , in Omega(T) = Omega x (0, T], with Omega subset of subset of R-N,under the condition 2 < p(i) < p(1 + 2/N) for each i = 1, .., N, being p the harmonic mean of the p(i)s, via recently discovered intrinsic Harnack estimates. Moreover, we establish an equivalent formulation of these Harnack estimates within the proper intrinsic geometry.

On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation / Simone CİANİ; Vincenzo VESPRI. - In: CONSTRUCTIVE MATHEMATICAL ANALYSIS. - ISSN 2651-2939. - ELETTRONICO. - 4:1(2021), pp. 93-103. [10.33205/cma.824336]

On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation

Simone CİANİ;Vincenzo VESPRI
2021

Abstract

We give a proof of Holder continuity for bounded local weak solutions to the equation(& lowast;) u(t) = Sigma(N)(i=1)(|u(xi)|(p)(i)-2u(xi))(xi) , in Omega(T) = Omega x (0, T], with Omega subset of subset of R-N,under the condition 2 < p(i) < p(1 + 2/N) for each i = 1, .., N, being p the harmonic mean of the p(i)s, via recently discovered intrinsic Harnack estimates. Moreover, we establish an equivalent formulation of these Harnack estimates within the proper intrinsic geometry.
2021
On Hölder continuity and equivalent formulation of intrinsic Harnack estimates for an anisotropic parabolic degenerate prototype equation / Simone CİANİ; Vincenzo VESPRI. - In: CONSTRUCTIVE MATHEMATICAL ANALYSIS. - ISSN 2651-2939. - ELETTRONICO. - 4:1(2021), pp. 93-103. [10.33205/cma.824336]
Simone CİANİ; Vincenzo VESPRI
File in questo prodotto:
File Dimensione Formato  
CMA.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 426.07 kB
Formato Adobe PDF
426.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/959287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact