Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (?max = 620 nm) and [Ir(sppy)3]3- (?max = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.

Knezevic S., Kerr E., Goudeau B., Valenti G., Paolucci F., Francis P.S., et al. (2023). Bimodal Electrochemiluminescence Microscopy of Single Cells. ANALYTICAL CHEMISTRY, 95(18), 7372-7378 [10.1021/acs.analchem.3c00869].

Bimodal Electrochemiluminescence Microscopy of Single Cells

Valenti G.;Paolucci F.;
2023

Abstract

Electrochemiluminescence (ECL) microscopy is an emerging technique with new applications such as imaging of single entities and cells. Herein, we have developed a bimodal and bicolor approach to record both positive ECL (PECL: light-emitting object on dark background) and shadow label-free ECL (SECL: nonemissive object shadowing the background luminescence) images of single cells. This bimodal approach is the result of the simultaneous emissions of [Ru(bpy)3]2+ used to label the cellular membrane (PECL) and [Ir(sppy)3]3- dissolved in solution (SECL). By spectrally resolving the ECL emission wavelengths, we recorded the images of the same cells in both PECL and SECL modes using the [Ru(bpy)3]2+ (?max = 620 nm) and [Ir(sppy)3]3- (?max = 515 nm) luminescence, respectively. PECL shows the distribution of the [Ru(bpy)3]2+ labels attached to the cellular membrane, whereas SECL reflects the local diffusional hindrance of the ECL reagents by each cell. The high sensitivity and surface-confined features of the reported approach are demonstrated by imaging cell-cell contacts during the mitosis process. Furthermore, the comparison of PECL and SECL images demonstrates the differential diffusion of tri-n-propylamine and [Ir(sppy)3]3- through the permeabilized cell membranes. Consequently, this dual approach enables the imaging of the morphology of the cell adhering on the surface and can significantly contribute to multimodal ECL imaging and bioassays with different luminescent systems.
2023
Knezevic S., Kerr E., Goudeau B., Valenti G., Paolucci F., Francis P.S., et al. (2023). Bimodal Electrochemiluminescence Microscopy of Single Cells. ANALYTICAL CHEMISTRY, 95(18), 7372-7378 [10.1021/acs.analchem.3c00869].
Knezevic S.; Kerr E.; Goudeau B.; Valenti G.; Paolucci F.; Francis P.S.; Kanoufi F.; Sojic N.
File in questo prodotto:
File Dimensione Formato  
ac3c00869_si_001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 913.47 kB
Formato Adobe PDF
913.47 kB Adobe PDF Visualizza/Apri
Valenti_111585958941.pdf

Open Access dal 26/04/2024

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 473.82 kB
Formato Adobe PDF
473.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958941
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact