We show that deep ReLU neural network classifiers can see a low-dimensional Riemannian manifold structure on data. Such structure comes via the local data matrix, a variation of the Fisher infor-mation matrix, where the role of the model parameters is taken by the data variables. We obtain a foliation of the data domain, and we show that the dataset on which the model is trained lies on a leaf, the data leaf, whose dimension is bounded by the number of classification labels. We validate our results with some experiments with the MNIST dataset: paths on the data leaf connect valid images, while other leaves cover noisy images.

Grementieri, L., Fioresi, R. (2022). Model-Centric Data Manifold: The Data Through the Eyes of the Model. SIAM JOURNAL ON IMAGING SCIENCES, 15(3), 1140-1156 [10.1137/21M1437056].

Model-Centric Data Manifold: The Data Through the Eyes of the Model

Fioresi, R
Co-primo
Membro del Collaboration Group
2022

Abstract

We show that deep ReLU neural network classifiers can see a low-dimensional Riemannian manifold structure on data. Such structure comes via the local data matrix, a variation of the Fisher infor-mation matrix, where the role of the model parameters is taken by the data variables. We obtain a foliation of the data domain, and we show that the dataset on which the model is trained lies on a leaf, the data leaf, whose dimension is bounded by the number of classification labels. We validate our results with some experiments with the MNIST dataset: paths on the data leaf connect valid images, while other leaves cover noisy images.
2022
Grementieri, L., Fioresi, R. (2022). Model-Centric Data Manifold: The Data Through the Eyes of the Model. SIAM JOURNAL ON IMAGING SCIENCES, 15(3), 1140-1156 [10.1137/21M1437056].
Grementieri, L; Fioresi, R
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact