We propose a theorem that extends the classical Lie approach to the case of fractional partial differential equations (fPDEs) of the Riemann-Liouville type in (1. +. 1) dimensions. © 2013 Académie des sciences.

Leo R.A., Sicuro G., Tempesta P. (2014). A theorem on the existence of symmetries of fractional PDEs. COMPTES RENDUS MATHÉMATIQUE, 352(3), 219-222 [10.1016/j.crma.2013.11.007].

A theorem on the existence of symmetries of fractional PDEs

Sicuro G.;
2014

Abstract

We propose a theorem that extends the classical Lie approach to the case of fractional partial differential equations (fPDEs) of the Riemann-Liouville type in (1. +. 1) dimensions. © 2013 Académie des sciences.
2014
Leo R.A., Sicuro G., Tempesta P. (2014). A theorem on the existence of symmetries of fractional PDEs. COMPTES RENDUS MATHÉMATIQUE, 352(3), 219-222 [10.1016/j.crma.2013.11.007].
Leo R.A.; Sicuro G.; Tempesta P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact