The success of a total knee replacement (TKR) strongly depends on the prosthetic design; this includes on one hand the best choice of the bearing materials to minimize wear, on the other hand a good orientation of the prosthetic components with respect to the loading directions. The aim of this study was to investigate the feasibility of a new experimental setup combining two fundamental aspects for the long-term success of knee implants: wear and micromotions. A novel procedure was used to simulate working conditions as close as possible to in vivo ones and to measure implant-bone micromotion, by means of fixing the femoral component of the prosthesis to the distal part of a synthetic femur to be tested through a knee simulator. Gravimetric wear of the tibial specimens was assessed at regular intervals. Implant-bone inducible micromotions and permanent migrations were measured at three locations throughout the test. Wear patterns on tibial specimens were characterized through a standardized protocol based on digital image analysis; fatigue damage in the cement was quantified. Some initial conditioning was noticed both in the wear process and microcracking distribution within the cement mantle. Similarity in wear tracks observed on tibial inserts and other retrieval studies, coupled with clinically consistent migration patterns for TKR, supports the efficacy of the new in vitro method presented.

Combined wear behaviour and long-term implant-bone fixation of total knee replacement: a novel in vitro set-up / M. Spinelli; S. Affatato; L. Cristofolini; P. Erani; D. Tigani; M. Viceconti. - In: ARTIFICIAL ORGANS. - ISSN 0160-564X. - STAMPA. - 34:5(2010), pp. 177-183. [10.1111/j.1525-1594.2009.00972.x]

Combined wear behaviour and long-term implant-bone fixation of total knee replacement: a novel in vitro set-up

CRISTOFOLINI, LUCA;M. Viceconti
2010

Abstract

The success of a total knee replacement (TKR) strongly depends on the prosthetic design; this includes on one hand the best choice of the bearing materials to minimize wear, on the other hand a good orientation of the prosthetic components with respect to the loading directions. The aim of this study was to investigate the feasibility of a new experimental setup combining two fundamental aspects for the long-term success of knee implants: wear and micromotions. A novel procedure was used to simulate working conditions as close as possible to in vivo ones and to measure implant-bone micromotion, by means of fixing the femoral component of the prosthesis to the distal part of a synthetic femur to be tested through a knee simulator. Gravimetric wear of the tibial specimens was assessed at regular intervals. Implant-bone inducible micromotions and permanent migrations were measured at three locations throughout the test. Wear patterns on tibial specimens were characterized through a standardized protocol based on digital image analysis; fatigue damage in the cement was quantified. Some initial conditioning was noticed both in the wear process and microcracking distribution within the cement mantle. Similarity in wear tracks observed on tibial inserts and other retrieval studies, coupled with clinically consistent migration patterns for TKR, supports the efficacy of the new in vitro method presented.
2010
Combined wear behaviour and long-term implant-bone fixation of total knee replacement: a novel in vitro set-up / M. Spinelli; S. Affatato; L. Cristofolini; P. Erani; D. Tigani; M. Viceconti. - In: ARTIFICIAL ORGANS. - ISSN 0160-564X. - STAMPA. - 34:5(2010), pp. 177-183. [10.1111/j.1525-1594.2009.00972.x]
M. Spinelli; S. Affatato; L. Cristofolini; P. Erani; D. Tigani; M. Viceconti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/95862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact