AimsMedical case vignettes play a crucial role in medical education, yet they often fail to authentically represent diverse patients. Moreover, these vignettes tend to oversimplify the complex relationship between patient characteristics and medical conditions, leading to biased and potentially harmful perspectives among students. Displaying aspects of patient diversity, such as ethnicity, in written cases proves challenging. Additionally, creating these cases places a significant burden on teachers in terms of labour and time. Our objective is to explore the potential of artificial intelligence (AI)-assisted computer-generated clinical cases to expedite case creation and enhance diversity, along with AI-generated patient photographs for more lifelike portrayal.MethodsIn this study, we employed ChatGPT (OpenAI, GPT 3.5) to develop diverse and inclusive medical case vignettes. We evaluated various approaches and identified a set of eight consecutive prompts that can be readily customized to accommodate local contexts and specific assignments. To enhance visual representation, we utilized Adobe Firefly beta for image generation.ResultsUsing the described prompts, we consistently generated cases for various assignments, producing sets of 30 cases at a time. We ensured the inclusion of mandatory checks and formatting, completing the process within approximately 60 min per set.ConclusionsOur approach significantly accelerated case creation and improved diversity, although prioritizing maximum diversity compromised representativeness to some extent. While the optimized prompts are easily reusable, the process itself demands computer skills not all educators possess. To address this, we aim to share all created patients as open educational resources, empowering educators to create cases independently.

Bakkum, M.J., Hartjes, M.G., Piët, J.D., Donker, E.M., Likic, R., Sanz, E., et al. (In stampa/Attività in corso). Using artificial intelligence to create diverse and inclusive medical case vignettes for education. BJCP. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 90(3), 640-648 [10.1111/bcp.15977].

Using artificial intelligence to create diverse and inclusive medical case vignettes for education

de Ponti, Fabrizio;
In corso di stampa

Abstract

AimsMedical case vignettes play a crucial role in medical education, yet they often fail to authentically represent diverse patients. Moreover, these vignettes tend to oversimplify the complex relationship between patient characteristics and medical conditions, leading to biased and potentially harmful perspectives among students. Displaying aspects of patient diversity, such as ethnicity, in written cases proves challenging. Additionally, creating these cases places a significant burden on teachers in terms of labour and time. Our objective is to explore the potential of artificial intelligence (AI)-assisted computer-generated clinical cases to expedite case creation and enhance diversity, along with AI-generated patient photographs for more lifelike portrayal.MethodsIn this study, we employed ChatGPT (OpenAI, GPT 3.5) to develop diverse and inclusive medical case vignettes. We evaluated various approaches and identified a set of eight consecutive prompts that can be readily customized to accommodate local contexts and specific assignments. To enhance visual representation, we utilized Adobe Firefly beta for image generation.ResultsUsing the described prompts, we consistently generated cases for various assignments, producing sets of 30 cases at a time. We ensured the inclusion of mandatory checks and formatting, completing the process within approximately 60 min per set.ConclusionsOur approach significantly accelerated case creation and improved diversity, although prioritizing maximum diversity compromised representativeness to some extent. While the optimized prompts are easily reusable, the process itself demands computer skills not all educators possess. To address this, we aim to share all created patients as open educational resources, empowering educators to create cases independently.
In corso di stampa
Bakkum, M.J., Hartjes, M.G., Piët, J.D., Donker, E.M., Likic, R., Sanz, E., et al. (In stampa/Attività in corso). Using artificial intelligence to create diverse and inclusive medical case vignettes for education. BJCP. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 90(3), 640-648 [10.1111/bcp.15977].
Bakkum, Michiel J; Hartjes, Mariëlle G; Piët, Joost D; Donker, Erik M; Likic, Robert; Sanz, Emilio; de Ponti, Fabrizio; Verdonk, Petra; Richir, Milan ...espandi
File in questo prodotto:
File Dimensione Formato  
Brit J Clinical Pharma - 2023 - Bakkum.pdf

accesso aperto

Tipo: Preprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958166
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact