A robust post processing technique is mandatory to analyse the coronagraphic high contrast imaging data. Angular Differential Imaging (ADI) and Principal Component Analysis (PCA) are the most used approaches to suppress the quasi-static structure in the Point Spread Function (PSF) in order to revealing planets at different separations from the host star. The focus of this work is to apply these two data reduction techniques to obtain the best limit detection for each coronagraphic setting that has been simulated for the SHARK-NIR, a coronagraphic camera that will be implemented at the Large Binocular Telescope (LBT). We investigated different seeing conditions (0.4'' − 1'') for stellar magnitude ranging from R=6 to R=14, with particular care in finding the best compromise between quasi-static speckle subtraction and planet detection.

Carolo, E., Vassallo, D., Farinato, J., Agapito, G., Bergomi, M., Carlotti, A., et al. (2018). Data processing on simulated data for SHARK-NIR [10.48550/arXiv.1808.03121].

Data processing on simulated data for SHARK-NIR

Umbriaco, G.
2018

Abstract

A robust post processing technique is mandatory to analyse the coronagraphic high contrast imaging data. Angular Differential Imaging (ADI) and Principal Component Analysis (PCA) are the most used approaches to suppress the quasi-static structure in the Point Spread Function (PSF) in order to revealing planets at different separations from the host star. The focus of this work is to apply these two data reduction techniques to obtain the best limit detection for each coronagraphic setting that has been simulated for the SHARK-NIR, a coronagraphic camera that will be implemented at the Large Binocular Telescope (LBT). We investigated different seeing conditions (0.4'' − 1'') for stellar magnitude ranging from R=6 to R=14, with particular care in finding the best compromise between quasi-static speckle subtraction and planet detection.
2018
Adaptive Optics for Extremely Large Telescopes V (AO4ELT5)
1
10
Carolo, E., Vassallo, D., Farinato, J., Agapito, G., Bergomi, M., Carlotti, A., et al. (2018). Data processing on simulated data for SHARK-NIR [10.48550/arXiv.1808.03121].
Carolo, E.; Vassallo, D.; Farinato, J.; Agapito, G.; Bergomi, M.; Carlotti, A.; de Pascale, M.; D?Orazi, V.; Greggio, D.; Magrin, D.; Marafatto, L.; M...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/958058
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact