: Motor-vehicle accidents often result in lower limb injuries with biosseous fractures. The present study aimed at comparing multi-slice computed tomography (MS-CT), micro-computed tomography (micro-CT) and external fractography for the analyses of experimentally produced biosseus leg fractures. Briefly, 48 human legs amputated for medical reasons were defleshed and then experimentally fractured using a 3-point dynamic bending model (70,6 J of impact energy at the middle of the anterior surface of the tibia) producing 38 biosseous and 10 mono-osseous fractures with a total of 86 fractured bones. External fractography detected 63 (73,2%) "butterfly" fractures (24 (27,9%) complete and 39 (45,3%) incomplete), 14 (16,3%) "oblique" fractures, 6 (7,0%) "comminuted" fractures and 3 (3,5%) "transverse" fractures. Forty-three (43) of the 48 included legs displayed at least one butterfly fracture located at the tibia or fibula. MS-CT correctly detected and classified 16 complete and 20 incomplete butterfly fractures, failing to properly classify 27 fractures; 19 of these misclassifications led to an interpretative error on the trauma direction (i.e., 16 incomplete butterfly fractures classified as oblique fractures and 3 incomplete butterfly fractures classified as transverse). Micro-CT correctly detected and classified 22 complete and 37 incomplete butterfly fractures, failing to properly classify 4 fractures; two of these misclassifications led to an interpretative error on the trauma direction (i.e., two incomplete butterfly fractures classified as oblique fractures). Although further studies evaluating a wider number of fractures and fracture patterns are required to drive any definitive conclusions, this preliminary experimental investigation showed that MS-CT and micro-CT represent useful tools for reconstructing the morphology of leg fractures and could be crucial for trauma analysis in the forensic context. MS-CT could be used as a screening tool, micro-CT as second level analysis and external/internal fractography as third level, confirmatory analysis.

Trevissoi, F., Franchetti, G., Fais, P., Gabbin, A., Giovannini, E., Martini, N., et al. (2023). Detection of butterfly fractures of long bones through multi-slice computed tomography and micro-computed tomography. LEGAL MEDICINE, 67, 1-10 [10.1016/j.legalmed.2024.102394].

Detection of butterfly fractures of long bones through multi-slice computed tomography and micro-computed tomography

Fais, Paolo;Giovannini, Elena;Sech, Maria;Pizzi, Marco;
2023

Abstract

: Motor-vehicle accidents often result in lower limb injuries with biosseous fractures. The present study aimed at comparing multi-slice computed tomography (MS-CT), micro-computed tomography (micro-CT) and external fractography for the analyses of experimentally produced biosseus leg fractures. Briefly, 48 human legs amputated for medical reasons were defleshed and then experimentally fractured using a 3-point dynamic bending model (70,6 J of impact energy at the middle of the anterior surface of the tibia) producing 38 biosseous and 10 mono-osseous fractures with a total of 86 fractured bones. External fractography detected 63 (73,2%) "butterfly" fractures (24 (27,9%) complete and 39 (45,3%) incomplete), 14 (16,3%) "oblique" fractures, 6 (7,0%) "comminuted" fractures and 3 (3,5%) "transverse" fractures. Forty-three (43) of the 48 included legs displayed at least one butterfly fracture located at the tibia or fibula. MS-CT correctly detected and classified 16 complete and 20 incomplete butterfly fractures, failing to properly classify 27 fractures; 19 of these misclassifications led to an interpretative error on the trauma direction (i.e., 16 incomplete butterfly fractures classified as oblique fractures and 3 incomplete butterfly fractures classified as transverse). Micro-CT correctly detected and classified 22 complete and 37 incomplete butterfly fractures, failing to properly classify 4 fractures; two of these misclassifications led to an interpretative error on the trauma direction (i.e., two incomplete butterfly fractures classified as oblique fractures). Although further studies evaluating a wider number of fractures and fracture patterns are required to drive any definitive conclusions, this preliminary experimental investigation showed that MS-CT and micro-CT represent useful tools for reconstructing the morphology of leg fractures and could be crucial for trauma analysis in the forensic context. MS-CT could be used as a screening tool, micro-CT as second level analysis and external/internal fractography as third level, confirmatory analysis.
2023
Trevissoi, F., Franchetti, G., Fais, P., Gabbin, A., Giovannini, E., Martini, N., et al. (2023). Detection of butterfly fractures of long bones through multi-slice computed tomography and micro-computed tomography. LEGAL MEDICINE, 67, 1-10 [10.1016/j.legalmed.2024.102394].
Trevissoi, Federica; Franchetti, Giorgia; Fais, Paolo; Gabbin, Andrea; Giovannini, Elena; Martini, Nicolò; Sech, Maria; Todesco, Giorgia; Pizzi, Marco...espandi
File in questo prodotto:
File Dimensione Formato  
Detection of butterfly fractures of long bones through multi-slice computed tomography and micro-computed tomography.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/957907
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact