We collect some peculiarities of higher-order fractional Laplacians (-Delta)(s), s > 1, with special attention to the range s is an element of (1, 2), which show their oscillatory nature. These include the failure of the polarization and Polya-Szego inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber-Krahn inequality still holds for any s > 1 in dimension one.
Abatangelo, N., Jarohs, S. (2024). Oscillatory phenomena for higher-order fractional Laplacians. PUBLICACIONS MATEMÀTIQUES, 68(1), 267-286 [10.5565/PUBLMAT6812412].
Oscillatory phenomena for higher-order fractional Laplacians
Abatangelo, Nicola;
2024
Abstract
We collect some peculiarities of higher-order fractional Laplacians (-Delta)(s), s > 1, with special attention to the range s is an element of (1, 2), which show their oscillatory nature. These include the failure of the polarization and Polya-Szego inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber-Krahn inequality still holds for any s > 1 in dimension one.File | Dimensione | Formato | |
---|---|---|---|
6812412.pdf
accesso riservato
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
411.07 kB
Formato
Adobe PDF
|
411.07 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.