Croton lechleri essential oil has been obtained by steam distillation of fresh stem bark from Amazonian Ecuador adult plants (yield: 0.61 ml/kg [0.061%]; density: 1.01 g/ml), and then chemically characterised by GC (Gas Chromatography) and GC-MS (gas chromatography-mass spectrometry). Seventy-four chemicals were detected and identified; the most abundant in descending order, were the sesquiterpenes sesquicineole (17.29%), α-calacorene (11.29%), 1,10-di-epi-cubenol (4.75%), β-calacorene (4.34%) and epi-cedrol (4.09%). Monoterpenes checked with a relative peak area higher than 2.0% were α-pinene (2.01%), p-cymene (2.61%), limonene (4.20%) and borneol (2.67%). The structure of the main chemicals were confirmed by GC-MS and 1H NMR analyses. Spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) and DPPH-(high performance) thin layer chromatography (DPPH-(HP)TLC) bioautographic assays showed a lower radical scavenging capacity (IC50) with respect to commercial thyme essential oil and BHA (butylated hydroxyl anisole), pointing out, however, that the C. lechleri essential oil fraction, characterised by α-calacorene, β-calacorene and δ-cadalene, was the most involved in the bioactivity. Similar results were obtained with β-carotene bleaching assay, where the IC50 values were 0.291 ± 0.024 mg/ml for C. lechleri essential oil, 0.164 ± 0.013 and 1.34 × 10-4 ± 10-5 mg/ml for thyme essential oil and BHA, respectively. (HP)TLC-bioautographic assay performed with Gram positive and Gram negative bacteria revealed a minimum inhibitory concentration (MIC) values comprised between 0.10 mg/ml (Escherichia coli) and 10.10 mg/ml (for e.g. Pseudomonas aeruginosa), and the fraction mainly characterised by sesquicineole (97.38%) as the most involved in antibacterial capacity. Ames test employing Salmonella typhimurium TA98 and TA100 with and without a metabolic activation mixture (S9 mix) demonstrated the absence of mutagenicity of the C. lechleri essential oil between a concentration range of 10-2 and 100 mg/plate. The same results were achieved by Saccharomyces cerevisiae D7 strain assay. An interesting mutagen-protective efficacy was evidenced by a 30% and 33% revertants reduction of TA98 strain treated with 2-aminoanthracene and nitrofluorene (2 μg/plate), suggesting, above all, the possibility to employ C. lechleri essential oil as a new flavouring protective ingredient for foods or dietary supplements against potential mutagens formed during cooking and/or processing in general.

ROSSI D., GUERRINI A., MAIETTI S., BRUNI R., PAGAMETTO G., POLI F., et al. (2011). Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient?. FOOD CHEMISTRY, 126, 837-848 [10.1016/j.foodchem.2010.11.042].

Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient?

POLI, FERRUCCIO;
2011

Abstract

Croton lechleri essential oil has been obtained by steam distillation of fresh stem bark from Amazonian Ecuador adult plants (yield: 0.61 ml/kg [0.061%]; density: 1.01 g/ml), and then chemically characterised by GC (Gas Chromatography) and GC-MS (gas chromatography-mass spectrometry). Seventy-four chemicals were detected and identified; the most abundant in descending order, were the sesquiterpenes sesquicineole (17.29%), α-calacorene (11.29%), 1,10-di-epi-cubenol (4.75%), β-calacorene (4.34%) and epi-cedrol (4.09%). Monoterpenes checked with a relative peak area higher than 2.0% were α-pinene (2.01%), p-cymene (2.61%), limonene (4.20%) and borneol (2.67%). The structure of the main chemicals were confirmed by GC-MS and 1H NMR analyses. Spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) and DPPH-(high performance) thin layer chromatography (DPPH-(HP)TLC) bioautographic assays showed a lower radical scavenging capacity (IC50) with respect to commercial thyme essential oil and BHA (butylated hydroxyl anisole), pointing out, however, that the C. lechleri essential oil fraction, characterised by α-calacorene, β-calacorene and δ-cadalene, was the most involved in the bioactivity. Similar results were obtained with β-carotene bleaching assay, where the IC50 values were 0.291 ± 0.024 mg/ml for C. lechleri essential oil, 0.164 ± 0.013 and 1.34 × 10-4 ± 10-5 mg/ml for thyme essential oil and BHA, respectively. (HP)TLC-bioautographic assay performed with Gram positive and Gram negative bacteria revealed a minimum inhibitory concentration (MIC) values comprised between 0.10 mg/ml (Escherichia coli) and 10.10 mg/ml (for e.g. Pseudomonas aeruginosa), and the fraction mainly characterised by sesquicineole (97.38%) as the most involved in antibacterial capacity. Ames test employing Salmonella typhimurium TA98 and TA100 with and without a metabolic activation mixture (S9 mix) demonstrated the absence of mutagenicity of the C. lechleri essential oil between a concentration range of 10-2 and 100 mg/plate. The same results were achieved by Saccharomyces cerevisiae D7 strain assay. An interesting mutagen-protective efficacy was evidenced by a 30% and 33% revertants reduction of TA98 strain treated with 2-aminoanthracene and nitrofluorene (2 μg/plate), suggesting, above all, the possibility to employ C. lechleri essential oil as a new flavouring protective ingredient for foods or dietary supplements against potential mutagens formed during cooking and/or processing in general.
2011
ROSSI D., GUERRINI A., MAIETTI S., BRUNI R., PAGAMETTO G., POLI F., et al. (2011). Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient?. FOOD CHEMISTRY, 126, 837-848 [10.1016/j.foodchem.2010.11.042].
ROSSI D.; GUERRINI A.; MAIETTI S.; BRUNI R.; PAGAMETTO G.; POLI F.; SCALVENZI L.; RADICE M.; SARO K.; SACCHETTI G.;
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/95726
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 54
social impact