We provide a general theoretical framework allowing us to extend the classical Lie theory for partial differential equations to the case of equations of fractional order. We propose a general prolongation formula for the study of Lie symmetries in the case of an arbitrary finite number of independent variables. We also prove the Lie theorem in the case of fractional differential equations, showing that the proper space for the analysis of these symmetries is the infinite dimensional jet space.

Leo R.A., Sicuro G., Tempesta P. (2017). A foundational approach to the lie theory for fractional order partial differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 20(1), 212-231 [10.1515/fca-2017-0011].

A foundational approach to the lie theory for fractional order partial differential equations

Sicuro G.
;
2017

Abstract

We provide a general theoretical framework allowing us to extend the classical Lie theory for partial differential equations to the case of equations of fractional order. We propose a general prolongation formula for the study of Lie symmetries in the case of an arbitrary finite number of independent variables. We also prove the Lie theorem in the case of fractional differential equations, showing that the proper space for the analysis of these symmetries is the infinite dimensional jet space.
2017
Leo R.A., Sicuro G., Tempesta P. (2017). A foundational approach to the lie theory for fractional order partial differential equations. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 20(1), 212-231 [10.1515/fca-2017-0011].
Leo R.A.; Sicuro G.; Tempesta P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/957169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact