Noise control and airflow in duct-like systems are among some of the most interesting applications to conjugate AMMs innovation and sustainability. Specifically applied to the built environment, they opened up a new field of research supporting indoor wellbeing, sanitised environments, and public activities. Previous research conducted by the authors has proved AMM based window to be a resourceful way to address both natural ventilation and reduce the incoming noise propagation; however, the effective spectral range did not cover lower frequencies (50-350 Hz). For this reason, in the presented paper, implementation in the AMM unit geometry was performed over a full-scale acoustic metawindow (AMW). The resonating volume has been enhanced (by 200% of the original one) and coupled with a set of lateral flanks. Numerical analysis through FEM proved that on a range of opening ratio from 3 to 33%, the TL related to the window is improved overall of the 70% on the frequency range from 50 to 350 Hz. Such results encourage the use of new AMMs ergonomic windows in place of standard ones to achieve both natural ventilation and noise attenuation from 50 to 5k Hz, being resourceful for domestic, sanitary, and public applications.
Fusaro G. , Garai M., Kang J. (2022). Broadband potential optimisation of a full scale acoustic metawindow performance. Wakefield : The Institute of Noise Control Engineering of the USA.
Broadband potential optimisation of a full scale acoustic metawindow performance
Fusaro G.
;Garai M.;
2022
Abstract
Noise control and airflow in duct-like systems are among some of the most interesting applications to conjugate AMMs innovation and sustainability. Specifically applied to the built environment, they opened up a new field of research supporting indoor wellbeing, sanitised environments, and public activities. Previous research conducted by the authors has proved AMM based window to be a resourceful way to address both natural ventilation and reduce the incoming noise propagation; however, the effective spectral range did not cover lower frequencies (50-350 Hz). For this reason, in the presented paper, implementation in the AMM unit geometry was performed over a full-scale acoustic metawindow (AMW). The resonating volume has been enhanced (by 200% of the original one) and coupled with a set of lateral flanks. Numerical analysis through FEM proved that on a range of opening ratio from 3 to 33%, the TL related to the window is improved overall of the 70% on the frequency range from 50 to 350 Hz. Such results encourage the use of new AMMs ergonomic windows in place of standard ones to achieve both natural ventilation and noise attenuation from 50 to 5k Hz, being resourceful for domestic, sanitary, and public applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.