Motivated by the worldwide development of shared mobility, we investigate a vehicle routing problem with time windows and deadlines called the first-mile ridesharing problem (FMRSP). The FMRSP involves routing a fleet of vehicles, each servicing customers within specific time windows. The FMRSP generalizes the well-known vehicle routing problem with time windows (VRPTW), additionally imposing that each vehicle route arrives at the destination before the earliest deadline associated with the set of customers served by the route. The FMRSP is also related to the VRPTW and release dates, where in addition to time window constraints, a release date is associated with each customer defining the earliest time that the order is available to leave the depot for delivery. For the FMRSP, we present an exact method based on a branch-price-and-cut (BPC) algorithm combining state-of-the-art techniques and an innovative pricing algorithm. The pricing algorithm is based on a bidirectional bucket graph-based labeling algorithm, in which the backward extension of a label is computed in a constant time. Effective dominance rules used to speed up the computation are also described. Extensive computational studies demonstrate that our proposed BPC algorithm can solve optimality-modified Solomon benchmark instances involving up to 100 customers and real-world instances involving up to 290 customers.

Wang S., Baldacci R., Yu Y., Zhang Y., Tang J., Luo X., et al. (2023). An Exact Method for a First-Mile Ridesharing Problem. TRANSPORTATION SCIENCE, 57(6), 181-1604 [10.1287/trsc.2022.0139].

An Exact Method for a First-Mile Ridesharing Problem

Baldacci R.;
2023

Abstract

Motivated by the worldwide development of shared mobility, we investigate a vehicle routing problem with time windows and deadlines called the first-mile ridesharing problem (FMRSP). The FMRSP involves routing a fleet of vehicles, each servicing customers within specific time windows. The FMRSP generalizes the well-known vehicle routing problem with time windows (VRPTW), additionally imposing that each vehicle route arrives at the destination before the earliest deadline associated with the set of customers served by the route. The FMRSP is also related to the VRPTW and release dates, where in addition to time window constraints, a release date is associated with each customer defining the earliest time that the order is available to leave the depot for delivery. For the FMRSP, we present an exact method based on a branch-price-and-cut (BPC) algorithm combining state-of-the-art techniques and an innovative pricing algorithm. The pricing algorithm is based on a bidirectional bucket graph-based labeling algorithm, in which the backward extension of a label is computed in a constant time. Effective dominance rules used to speed up the computation are also described. Extensive computational studies demonstrate that our proposed BPC algorithm can solve optimality-modified Solomon benchmark instances involving up to 100 customers and real-world instances involving up to 290 customers.
2023
Wang S., Baldacci R., Yu Y., Zhang Y., Tang J., Luo X., et al. (2023). An Exact Method for a First-Mile Ridesharing Problem. TRANSPORTATION SCIENCE, 57(6), 181-1604 [10.1287/trsc.2022.0139].
Wang S.; Baldacci R.; Yu Y.; Zhang Y.; Tang J.; Luo X.; Sun W.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/954729
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact