The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many C-X (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

Carbon Vacancies Steer the Activity in Dual Ni Carbon Nitride Photocatalysis / Marchi M.; Raciti E.; Gali S.M.; Piccirilli F.; Vondracek H.; Actis A.; Salvadori E.; Rosso C.; Criado A.; D'Agostino C.; Forster L.; Lee D.; Foucher A.C.; Rai R.K.; Beljonne D.; Stach E.A.; Chiesa M.; Lazzaroni R.; Filippini G.; Prato M.; Melchionna M.; Fornasiero P.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - ELETTRONICO. - 10:(2023), pp. e2303781.1-e2303781.12. [10.1002/advs.202303781]

Carbon Vacancies Steer the Activity in Dual Ni Carbon Nitride Photocatalysis

D'Agostino C.;
2023

Abstract

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many C-X (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.
2023
Carbon Vacancies Steer the Activity in Dual Ni Carbon Nitride Photocatalysis / Marchi M.; Raciti E.; Gali S.M.; Piccirilli F.; Vondracek H.; Actis A.; Salvadori E.; Rosso C.; Criado A.; D'Agostino C.; Forster L.; Lee D.; Foucher A.C.; Rai R.K.; Beljonne D.; Stach E.A.; Chiesa M.; Lazzaroni R.; Filippini G.; Prato M.; Melchionna M.; Fornasiero P.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - ELETTRONICO. - 10:(2023), pp. e2303781.1-e2303781.12. [10.1002/advs.202303781]
Marchi M.; Raciti E.; Gali S.M.; Piccirilli F.; Vondracek H.; Actis A.; Salvadori E.; Rosso C.; Criado A.; D'Agostino C.; Forster L.; Lee D.; Foucher A.C.; Rai R.K.; Beljonne D.; Stach E.A.; Chiesa M.; Lazzaroni R.; Filippini G.; Prato M.; Melchionna M.; Fornasiero P.
File in questo prodotto:
File Dimensione Formato  
Advanced Science - 2023 - Marchi.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/953800
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 9
social impact