Recent developments in molecular rotational resonance (MRR) spectroscopy that have enabled its use as an analytical technique for the precise determination of molecular structure are reviewed. In particular, its use in the differentiation of isomeric compounds—including regioisomers, stereoisomers and isotopic variants—is discussed. When a mixture of isomers, such as resulting from a chemical reaction, is analyzed, it is highly desired to be able to unambiguously identify the structures of each of the components present, as well as quantify them, without requiring complex sample preparation or reference standards. MRR offers unique capabilities for addressing this analytical challenge, owing to two factors: its high sensitivity to a molecule's structure and its high spectral resolution, allowing mixtures to be resolved without separation of components. This review introduces core theoretical principles, an introduction to MRR instrumentation and the methods by which spectra can be interpreted with the aid of computational chemistry to correlate the observed patterns to molecular structures. Recent articles are discussed in which this technique was applied to help chemists complete challenging isomer analyses. Developments in the use of MRR for chiral analysis and in the measurement of isotopically labeled compounds are also highlighted.
Neill J.L., Evangelisti L., Pate B.H. (2023). Analysis of isomeric mixtures by molecular rotational resonance spectroscopy. ANALYTICAL SCIENCE ADVANCES, 4(5-6), 204-219 [10.1002/ansa.202300021].
Analysis of isomeric mixtures by molecular rotational resonance spectroscopy
Evangelisti L.Penultimo
;
2023
Abstract
Recent developments in molecular rotational resonance (MRR) spectroscopy that have enabled its use as an analytical technique for the precise determination of molecular structure are reviewed. In particular, its use in the differentiation of isomeric compounds—including regioisomers, stereoisomers and isotopic variants—is discussed. When a mixture of isomers, such as resulting from a chemical reaction, is analyzed, it is highly desired to be able to unambiguously identify the structures of each of the components present, as well as quantify them, without requiring complex sample preparation or reference standards. MRR offers unique capabilities for addressing this analytical challenge, owing to two factors: its high sensitivity to a molecule's structure and its high spectral resolution, allowing mixtures to be resolved without separation of components. This review introduces core theoretical principles, an introduction to MRR instrumentation and the methods by which spectra can be interpreted with the aid of computational chemistry to correlate the observed patterns to molecular structures. Recent articles are discussed in which this technique was applied to help chemists complete challenging isomer analyses. Developments in the use of MRR for chiral analysis and in the measurement of isotopically labeled compounds are also highlighted.File | Dimensione | Formato | |
---|---|---|---|
Analytical Science Advances - 2023 - Neill - Analysis of isomeric mixtures by molecular rotational resonance spectroscopy.pdf
accesso aperto
Descrizione: Articolo
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.