Far-field wireless power transfer (WPT), based on radio frequency (RF) waves, came into the picture to fulfill the power need of large Internet-of-Things (IoT) networks, the backbone of the 5G and beyond era. However, RF communication signals carry both information as well as energy. Therefore, recently, simultaneous wireless information and power transfer (SWIPT) has attracted much attention in order to wirelessly charge these IoT devices. In this article, we propose a novel N-tone multitone phase shift keying (PSK) modulation scheme, taking advantage of the nonlinearity of integrated receiver rectifier architecture. The main advantage of the proposed modulation scheme is the reduction in ripple voltage, introduced by the symbol transmission through phases. Achievable power conversion efficiency (PCE) and bit-error-rate (BER) at the output are considered to measure the efficacy of the proposed modulation scheme. Simulation results are verified by the measurements over the designed rectifier circuitry. The effect of symbol phase range, modulation order, and the number of tones are analyzed. In the future, this transmission scheme can be utilized to satisfy the data and power requirements of low-power IoT sensor networks.

Multitone PSK Modulation Design for Simultaneous Wireless Information and Power Transfer

Paolini G.;Costanzo A.;
2024

Abstract

Far-field wireless power transfer (WPT), based on radio frequency (RF) waves, came into the picture to fulfill the power need of large Internet-of-Things (IoT) networks, the backbone of the 5G and beyond era. However, RF communication signals carry both information as well as energy. Therefore, recently, simultaneous wireless information and power transfer (SWIPT) has attracted much attention in order to wirelessly charge these IoT devices. In this article, we propose a novel N-tone multitone phase shift keying (PSK) modulation scheme, taking advantage of the nonlinearity of integrated receiver rectifier architecture. The main advantage of the proposed modulation scheme is the reduction in ripple voltage, introduced by the symbol transmission through phases. Achievable power conversion efficiency (PCE) and bit-error-rate (BER) at the output are considered to measure the efficacy of the proposed modulation scheme. Simulation results are verified by the measurements over the designed rectifier circuitry. The effect of symbol phase range, modulation order, and the number of tones are analyzed. In the future, this transmission scheme can be utilized to satisfy the data and power requirements of low-power IoT sensor networks.
2024
Dhull P.; Schreurs D.; Paolini G.; Costanzo A.; Abolhasan M.; Shariati N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/953183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact