Hardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, a complex solid solution (Ca1.4Sr0.6Zn0.85Mg0.15Si2O7) that has superior biocompatibility and bioactivity properties compared to pure hardystonite (Ca2ZnSi2O7) can be obtained. Proteolytic-resistant adhesive peptide mapped on vitronectin (D2HVP), was selectively grafted to Sr/Mg-doped HT foams using two different strategies. Unfortunately, the first method (via protected peptide) was unsuitable for acid-sensitive materials such as Sr/Mg-doped HT, resulting in the release of cytotoxic levels of Zinc over time, with consequent negative cellular response. To overcome this unexpected result, a novel functionalization strategy requiring aqueous solution and mild conditions was designed. Sr/Mg-doped HT functionalized with this second strategy (via aldehyde peptide) showed a dramatic increase in human osteoblast proliferation at 6 days compared to only silanized or non-functionalized samples. Furthermore, we demonstrated that the functionalization treatment does not induce any cytotoxicity. Functionalized foams enhanced mRNA-specific transcript levels coding IBSP, VTN, RUNX2, and SPP1 at 2 days post-seeding. In conclusion, the second functionalization strategy proved to be appropriate for this specific biomaterial and was effective at enhancing the material’s bioactivity.

Zamuner A., Zeni E., Elsayed H., Di Foggia M., Taddei P., Pasquato A., et al. (2023). Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies. BIOMIMETICS, 8(2), 1-20 [10.3390/biomimetics8020185].

Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies

Elsayed H.;Di Foggia M.;Taddei P.;Pasquato A.;Bernardo E.;
2023

Abstract

Hardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, a complex solid solution (Ca1.4Sr0.6Zn0.85Mg0.15Si2O7) that has superior biocompatibility and bioactivity properties compared to pure hardystonite (Ca2ZnSi2O7) can be obtained. Proteolytic-resistant adhesive peptide mapped on vitronectin (D2HVP), was selectively grafted to Sr/Mg-doped HT foams using two different strategies. Unfortunately, the first method (via protected peptide) was unsuitable for acid-sensitive materials such as Sr/Mg-doped HT, resulting in the release of cytotoxic levels of Zinc over time, with consequent negative cellular response. To overcome this unexpected result, a novel functionalization strategy requiring aqueous solution and mild conditions was designed. Sr/Mg-doped HT functionalized with this second strategy (via aldehyde peptide) showed a dramatic increase in human osteoblast proliferation at 6 days compared to only silanized or non-functionalized samples. Furthermore, we demonstrated that the functionalization treatment does not induce any cytotoxicity. Functionalized foams enhanced mRNA-specific transcript levels coding IBSP, VTN, RUNX2, and SPP1 at 2 days post-seeding. In conclusion, the second functionalization strategy proved to be appropriate for this specific biomaterial and was effective at enhancing the material’s bioactivity.
2023
Zamuner A., Zeni E., Elsayed H., Di Foggia M., Taddei P., Pasquato A., et al. (2023). Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies. BIOMIMETICS, 8(2), 1-20 [10.3390/biomimetics8020185].
Zamuner A.; Zeni E.; Elsayed H.; Di Foggia M.; Taddei P.; Pasquato A.; Di Silvio L.; Bernardo E.; Brun P.; Dettin M.
File in questo prodotto:
File Dimensione Formato  
biomimetics-08-00185-v2-1.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.98 MB
Formato Adobe PDF
6.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/953144
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact