We present 0.″2 resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 870 μm in a stellar mass-selected sample of 85 massive (M* > 1011 M⊙) star-forming galaxies (SFGs) at z = 1.9-2.6 in the CANDELS/3D-Hubble Space Telescope fields of UDS and GOODS-S. We measure the effective radius of the rest-frame far-infrared (FIR) emission for 62 massive SFGs. They are distributed over wide ranges of FIR size from Re,FIR = 0.4 kpc to Re,FIR = 6 kpc. The effective radius of the FIR emission is smaller by a factor of 2.3-1.0+1.9 than the effective radius of the optical emission and is smaller by a factor of 1.9-1.0+1.9 than the half-mass radius. Taking into account potential extended components, the FIR size would change only by ∼10%. By combining the spatial distributions of the FIR and optical emission, we investigate how galaxies change the effective radius of the optical emission and the stellar mass within a radius of 1 kpc, M1kpc. The compact starburst puts most of the massive SFGs on the mass-size relation for quiescent galaxies (QGs) at z ∼ 2 within 300 Myr if the current star formation activity and its spatial distribution are maintained. We also find that within 300 Myr, ∼38% of massive SFGs can reach the central mass of M1kpc = 1010.5 M ⊙, which is around the boundary between massive SFGs and QGs. These results suggest an outside-in transformation scenario in which a dense core is formed at the center of a more extended disk, likely via dissipative in-disk inflows. Synchronized observations at ALMA 870 μm and James Webb Space Telescope 3-4 μm will explicitly verify this scenario.
Tadaki K.-I., Belli S., Burkert A., Dekel A., Forster Schreiber N.M., Genzel R., et al. (2020). Structural Evolution in Massive Galaxies at z ∼ 2. THE ASTROPHYSICAL JOURNAL, 901(1), 1-23 [10.3847/1538-4357/abaf4a].
Structural Evolution in Massive Galaxies at z ∼ 2
Belli S.;Renzini A.;
2020
Abstract
We present 0.″2 resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations at 870 μm in a stellar mass-selected sample of 85 massive (M* > 1011 M⊙) star-forming galaxies (SFGs) at z = 1.9-2.6 in the CANDELS/3D-Hubble Space Telescope fields of UDS and GOODS-S. We measure the effective radius of the rest-frame far-infrared (FIR) emission for 62 massive SFGs. They are distributed over wide ranges of FIR size from Re,FIR = 0.4 kpc to Re,FIR = 6 kpc. The effective radius of the FIR emission is smaller by a factor of 2.3-1.0+1.9 than the effective radius of the optical emission and is smaller by a factor of 1.9-1.0+1.9 than the half-mass radius. Taking into account potential extended components, the FIR size would change only by ∼10%. By combining the spatial distributions of the FIR and optical emission, we investigate how galaxies change the effective radius of the optical emission and the stellar mass within a radius of 1 kpc, M1kpc. The compact starburst puts most of the massive SFGs on the mass-size relation for quiescent galaxies (QGs) at z ∼ 2 within 300 Myr if the current star formation activity and its spatial distribution are maintained. We also find that within 300 Myr, ∼38% of massive SFGs can reach the central mass of M1kpc = 1010.5 M ⊙, which is around the boundary between massive SFGs and QGs. These results suggest an outside-in transformation scenario in which a dense core is formed at the center of a more extended disk, likely via dissipative in-disk inflows. Synchronized observations at ALMA 870 μm and James Webb Space Telescope 3-4 μm will explicitly verify this scenario.File | Dimensione | Formato | |
---|---|---|---|
Tadaki_2020_ApJ_901_74.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
8.76 MB
Formato
Adobe PDF
|
8.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.