Statistical problems in modelling personal-income distributions include estimation procedures, testing, and model choice. Typically, the parameters of a given model are estimated by classical procedures such as maximum-likelihood and least-squares estimators. Unfortunately, the classical methods are very sensitive to model deviations such as gross errors in the data, grouping effects, or model misspecifications. These deviations can ruin the values of the estimators and inequality measures and can produce false information about the distribution of the personal income in a country. In this paper we discuss the use of robust techniques for the estimation of income distributions. These methods behave like the classical procedures at the model but are less influenced by model deviations and can be applied to general estimation problems.

Maria-Pia Victoria-Feser, Elvezio Ronchetti (1994). Robust methods for personal-income distribution models. CANADIAN JOURNAL OF STATISTICS, 22(2), 247-258 [10.2307/3315587].

Robust methods for personal-income distribution models

Maria-Pia Victoria-Feser;
1994

Abstract

Statistical problems in modelling personal-income distributions include estimation procedures, testing, and model choice. Typically, the parameters of a given model are estimated by classical procedures such as maximum-likelihood and least-squares estimators. Unfortunately, the classical methods are very sensitive to model deviations such as gross errors in the data, grouping effects, or model misspecifications. These deviations can ruin the values of the estimators and inequality measures and can produce false information about the distribution of the personal income in a country. In this paper we discuss the use of robust techniques for the estimation of income distributions. These methods behave like the classical procedures at the model but are less influenced by model deviations and can be applied to general estimation problems.
1994
Maria-Pia Victoria-Feser, Elvezio Ronchetti (1994). Robust methods for personal-income distribution models. CANADIAN JOURNAL OF STATISTICS, 22(2), 247-258 [10.2307/3315587].
Maria-Pia Victoria-Feser; Elvezio Ronchetti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact