Guttapercha (GP, trans-1,4-polyisoprene) is the most used tooth root filling material, and it must be used with an appropriate cement (typically a polydimethylsiloxane (PDMS)-based sealer) to ensure an adequate canal obturation. This study aimed to assess the bioactivity and dentin remineralization ability of a bioglass containing PDMS commercial endodontic sealer, BG-PDMS (GuttaFlow Bioseal), and to evaluate the possible influence of a GP cone (Roeko GP point) on the mineralization process. To this end, BG-PDMS disks were aged alone or in the presence of a GP cone in Hank's Balanced Salt Solution (28 d, 37 degrees C). Dentin remineralization experiments were carried out under the same conditions. Micro-Raman and IR analyses demonstrated that BG-PDMS is bioactive, thanks to the formation of a silica-rich layer with nucleation sites for B-type carbonated apatite deposition. This phase was thicker when BG-PDMS was aged in the presence of GP. The two materials influenced each other because GP, which alone did not show any bioactivity, nucleated a calcium phosphate phase under these conditions. Analogously, dentin remineralization experiments showed that BG-PDMS is able to remineralize dentin, especially in the presence of GP. Under the experimental conditions, GP acted as a templating agent for calcium phosphate deposition.

Taddei, P., Di Foggia, M., Zamparini, F., Prati, C., Gandolfi, M.G. (2023). Guttapercha Improves In Vitro Bioactivity and Dentin Remineralization Ability of a Bioglass Containing Polydimethylsiloxane-Based Root Canal Sealer. MOLECULES, 28(20), 7088-7106 [10.3390/molecules28207088].

Guttapercha Improves In Vitro Bioactivity and Dentin Remineralization Ability of a Bioglass Containing Polydimethylsiloxane-Based Root Canal Sealer

Taddei, Paola;Di Foggia, Michele
;
Zamparini, Fausto;Prati, Carlo;Gandolfi, Maria Giovanna
2023

Abstract

Guttapercha (GP, trans-1,4-polyisoprene) is the most used tooth root filling material, and it must be used with an appropriate cement (typically a polydimethylsiloxane (PDMS)-based sealer) to ensure an adequate canal obturation. This study aimed to assess the bioactivity and dentin remineralization ability of a bioglass containing PDMS commercial endodontic sealer, BG-PDMS (GuttaFlow Bioseal), and to evaluate the possible influence of a GP cone (Roeko GP point) on the mineralization process. To this end, BG-PDMS disks were aged alone or in the presence of a GP cone in Hank's Balanced Salt Solution (28 d, 37 degrees C). Dentin remineralization experiments were carried out under the same conditions. Micro-Raman and IR analyses demonstrated that BG-PDMS is bioactive, thanks to the formation of a silica-rich layer with nucleation sites for B-type carbonated apatite deposition. This phase was thicker when BG-PDMS was aged in the presence of GP. The two materials influenced each other because GP, which alone did not show any bioactivity, nucleated a calcium phosphate phase under these conditions. Analogously, dentin remineralization experiments showed that BG-PDMS is able to remineralize dentin, especially in the presence of GP. Under the experimental conditions, GP acted as a templating agent for calcium phosphate deposition.
2023
Taddei, P., Di Foggia, M., Zamparini, F., Prati, C., Gandolfi, M.G. (2023). Guttapercha Improves In Vitro Bioactivity and Dentin Remineralization Ability of a Bioglass Containing Polydimethylsiloxane-Based Root Canal Sealer. MOLECULES, 28(20), 7088-7106 [10.3390/molecules28207088].
Taddei, Paola; Di Foggia, Michele; Zamparini, Fausto; Prati, Carlo; Gandolfi, Maria Giovanna
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952893
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact