One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C [ ∂ ] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work [B.Bakalov, A.D'Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1-140]. In a series of papers, starting with the present one, we classify all irreducible finite modules over finite simple Lie pseudoalgebras. © 2005 Elsevier Inc. All rights reserved.

Bakalov B., D'Andrea A., Kac V.G. (2006). Irreducible modules over finite simple Lie pseudoalgebras I. Primitive pseudoalgebras of type W and S. ADVANCES IN MATHEMATICS, 204(1), 293-361 [10.1016/j.aim.2005.07.003].

Irreducible modules over finite simple Lie pseudoalgebras I. Primitive pseudoalgebras of type W and S

D'Andrea A.;
2006

Abstract

One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C [ ∂ ] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work [B.Bakalov, A.D'Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1-140]. In a series of papers, starting with the present one, we classify all irreducible finite modules over finite simple Lie pseudoalgebras. © 2005 Elsevier Inc. All rights reserved.
2006
Bakalov B., D'Andrea A., Kac V.G. (2006). Irreducible modules over finite simple Lie pseudoalgebras I. Primitive pseudoalgebras of type W and S. ADVANCES IN MATHEMATICS, 204(1), 293-361 [10.1016/j.aim.2005.07.003].
Bakalov B.; D'Andrea A.; Kac V.G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact