In this paper, we give a characterization of digraphs Q, {pipe}Q{pipe}≤4 such that the associated Hecke-Kiselman monoids HQ are finite. In general, a necessary condition for HQ to be a finite monoid is that Q is acyclic and its Coxeter components are Dynkin diagrams. We show, by constructing examples, that such conditions are not sufficient. © 2012 Springer Science+Business Media, LLC.

Aragona R., D'Andrea A. (2013). Hecke-Kiselman monoids of small cardinality. SEMIGROUP FORUM, 86(1), 32-40 [10.1007/s00233-012-9422-2].

Hecke-Kiselman monoids of small cardinality

D'Andrea A.
2013

Abstract

In this paper, we give a characterization of digraphs Q, {pipe}Q{pipe}≤4 such that the associated Hecke-Kiselman monoids HQ are finite. In general, a necessary condition for HQ to be a finite monoid is that Q is acyclic and its Coxeter components are Dynkin diagrams. We show, by constructing examples, that such conditions are not sufficient. © 2012 Springer Science+Business Media, LLC.
2013
Aragona R., D'Andrea A. (2013). Hecke-Kiselman monoids of small cardinality. SEMIGROUP FORUM, 86(1), 32-40 [10.1007/s00233-012-9422-2].
Aragona R.; D'Andrea A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952706
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact