Let L be a Lie pseudoalgebra, a ∈ L. We show that, if a generates a (finite) solvable subalgebra S = ⟨a⟩ ⊂ L, then one may find a lifting a ̄ ∈ S of [a] ∈ S/S′ such that ⟨a ̄⟩ is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U⋉N, where U is a subalgebra of V whose underlying Lie conformal algebra ULie is a nilpotent self-normalizing subalgebra of V Lie, and N = V [∞] is a canonically determined ideal contained in the nilradical Nil V .

D'Andrea A., Marchei G. (2012). A root space decomposition for finite vertex algebras. DOCUMENTA MATHEMATICA, 17(2012), 783-806.

A root space decomposition for finite vertex algebras

D'Andrea A.;
2012

Abstract

Let L be a Lie pseudoalgebra, a ∈ L. We show that, if a generates a (finite) solvable subalgebra S = ⟨a⟩ ⊂ L, then one may find a lifting a ̄ ∈ S of [a] ∈ S/S′ such that ⟨a ̄⟩ is nilpotent. We then apply this result towards vertex algebras: we show that every finite vertex algebra V admits a decomposition into a semi-direct product V = U⋉N, where U is a subalgebra of V whose underlying Lie conformal algebra ULie is a nilpotent self-normalizing subalgebra of V Lie, and N = V [∞] is a canonically determined ideal contained in the nilradical Nil V .
2012
D'Andrea A., Marchei G. (2012). A root space decomposition for finite vertex algebras. DOCUMENTA MATHEMATICA, 17(2012), 783-806.
D'Andrea A.; Marchei G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact