For X a smooth projective variety and a simple normal crossing divisor, we establish a precise cycle-level correspondence between the genus local Gromov-Witten theory of the bundle and the maximal contact Gromov-Witten theory of the multiroot stack. The proof is an implementation of the rank-reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants.
Battistella L., Nabijou N., Tseng H.-H., You F. (2023). The Local-Orbifold Correspondence for Simple Normal Crossing Pairs. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 22(5), 2515-2531 [10.1017/S1474748022000172].
The Local-Orbifold Correspondence for Simple Normal Crossing Pairs
Battistella L.;
2023
Abstract
For X a smooth projective variety and a simple normal crossing divisor, we establish a precise cycle-level correspondence between the genus local Gromov-Witten theory of the bundle and the maximal contact Gromov-Witten theory of the multiroot stack. The proof is an implementation of the rank-reduction strategy. We use this point of view to clarify the relationship between logarithmic and orbifold invariants.File | Dimensione | Formato | |
---|---|---|---|
the-local-orbifold-correspondence-for-simple-normal-crossing-pairs.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
337.25 kB
Formato
Adobe PDF
|
337.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.